| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | Unicode version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9171 |
. 2
| |
| 2 | 3re 9184 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | 2, 3 | readdcli 8159 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9169 df-3 9170 df-4 9171 |
| This theorem is referenced by: 4cn 9188 5re 9189 4ne0 9208 4ap0 9209 5pos 9210 2lt4 9284 1lt4 9285 4lt5 9286 3lt5 9287 2lt5 9288 1lt5 9289 4lt6 9291 3lt6 9292 4lt7 9297 3lt7 9298 4lt8 9304 3lt8 9305 4lt9 9312 3lt9 9313 8th4div3 9330 div4p1lem1div2 9365 4lt10 9713 3lt10 9714 eluz4eluz2 9762 fz0to4untppr 10320 fzo0to42pr 10426 fldiv4p1lem1div2 10525 faclbnd2 10964 4bc2eq6 10996 resqrexlemover 11521 resqrexlemcalc1 11525 resqrexlemcalc2 11526 resqrexlemcalc3 11527 resqrexlemnm 11529 resqrexlemga 11534 sqrt2gt1lt2 11560 amgm2 11629 ef01bndlem 12267 sin01bnd 12268 cos01bnd 12269 cos2bnd 12271 flodddiv4 12447 4sqlem12 12925 tsetndxnstarvndx 13227 slotsdifplendx 13243 slotsdifdsndx 13258 slotsdifunifndx 13265 dveflem 15400 sin0pilem2 15456 sinhalfpilem 15465 sincosq1lem 15499 coseq0negpitopi 15510 tangtx 15512 sincos4thpi 15514 pigt3 15518 gausslemma2dlem0d 15731 gausslemma2dlem3 15742 gausslemma2dlem4 15743 |
| Copyright terms: Public domain | W3C validator |