| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | Unicode version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9068 |
. 2
| |
| 2 | 3re 9081 |
. . 3
| |
| 3 | 1re 8042 |
. . 3
| |
| 4 | 2, 3 | readdcli 8056 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9066 df-3 9067 df-4 9068 |
| This theorem is referenced by: 4cn 9085 5re 9086 4ne0 9105 4ap0 9106 5pos 9107 2lt4 9181 1lt4 9182 4lt5 9183 3lt5 9184 2lt5 9185 1lt5 9186 4lt6 9188 3lt6 9189 4lt7 9194 3lt7 9195 4lt8 9201 3lt8 9202 4lt9 9209 3lt9 9210 8th4div3 9227 div4p1lem1div2 9262 4lt10 9609 3lt10 9610 eluz4eluz2 9658 fz0to4untppr 10216 fzo0to42pr 10313 fldiv4p1lem1div2 10412 faclbnd2 10851 4bc2eq6 10883 resqrexlemover 11192 resqrexlemcalc1 11196 resqrexlemcalc2 11197 resqrexlemcalc3 11198 resqrexlemnm 11200 resqrexlemga 11205 sqrt2gt1lt2 11231 amgm2 11300 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos2bnd 11942 flodddiv4 12118 4sqlem12 12596 tsetndxnstarvndx 12896 slotsdifplendx 12912 slotsdifdsndx 12927 slotsdifunifndx 12934 dveflem 15046 sin0pilem2 15102 sinhalfpilem 15111 sincosq1lem 15145 coseq0negpitopi 15156 tangtx 15158 sincos4thpi 15160 pigt3 15164 gausslemma2dlem0d 15377 gausslemma2dlem3 15388 gausslemma2dlem4 15389 |
| Copyright terms: Public domain | W3C validator |