| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | Unicode version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9097 |
. 2
| |
| 2 | 3re 9110 |
. . 3
| |
| 3 | 1re 8071 |
. . 3
| |
| 4 | 2, 3 | readdcli 8085 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9095 df-3 9096 df-4 9097 |
| This theorem is referenced by: 4cn 9114 5re 9115 4ne0 9134 4ap0 9135 5pos 9136 2lt4 9210 1lt4 9211 4lt5 9212 3lt5 9213 2lt5 9214 1lt5 9215 4lt6 9217 3lt6 9218 4lt7 9223 3lt7 9224 4lt8 9230 3lt8 9231 4lt9 9238 3lt9 9239 8th4div3 9256 div4p1lem1div2 9291 4lt10 9639 3lt10 9640 eluz4eluz2 9688 fz0to4untppr 10246 fzo0to42pr 10349 fldiv4p1lem1div2 10448 faclbnd2 10887 4bc2eq6 10919 resqrexlemover 11321 resqrexlemcalc1 11325 resqrexlemcalc2 11326 resqrexlemcalc3 11327 resqrexlemnm 11329 resqrexlemga 11334 sqrt2gt1lt2 11360 amgm2 11429 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 cos2bnd 12071 flodddiv4 12247 4sqlem12 12725 tsetndxnstarvndx 13026 slotsdifplendx 13042 slotsdifdsndx 13057 slotsdifunifndx 13064 dveflem 15198 sin0pilem2 15254 sinhalfpilem 15263 sincosq1lem 15297 coseq0negpitopi 15308 tangtx 15310 sincos4thpi 15312 pigt3 15316 gausslemma2dlem0d 15529 gausslemma2dlem3 15540 gausslemma2dlem4 15541 |
| Copyright terms: Public domain | W3C validator |