Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4re | Unicode version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8951 | . 2 | |
2 | 3re 8964 | . . 3 | |
3 | 1re 7931 | . . 3 | |
4 | 2, 3 | readdcli 7945 | . 2 |
5 | 1, 4 | eqeltri 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 (class class class)co 5865 cr 7785 c1 7787 caddc 7789 c3 8942 c4 8943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 df-2 8949 df-3 8950 df-4 8951 |
This theorem is referenced by: 4cn 8968 5re 8969 4ne0 8988 4ap0 8989 5pos 8990 2lt4 9063 1lt4 9064 4lt5 9065 3lt5 9066 2lt5 9067 1lt5 9068 4lt6 9070 3lt6 9071 4lt7 9076 3lt7 9077 4lt8 9083 3lt8 9084 4lt9 9091 3lt9 9092 8th4div3 9109 div4p1lem1div2 9143 4lt10 9490 3lt10 9491 eluz4eluz2 9538 fz0to4untppr 10092 fzo0to42pr 10188 fldiv4p1lem1div2 10273 faclbnd2 10688 4bc2eq6 10720 resqrexlemover 10985 resqrexlemcalc1 10989 resqrexlemcalc2 10990 resqrexlemcalc3 10991 resqrexlemnm 10993 resqrexlemga 10998 sqrt2gt1lt2 11024 amgm2 11093 ef01bndlem 11730 sin01bnd 11731 cos01bnd 11732 cos2bnd 11734 flodddiv4 11904 tsetndxnstarvndx 12588 slotsdifdsndx 12607 dveflem 13756 sin0pilem2 13772 sinhalfpilem 13781 sincosq1lem 13815 coseq0negpitopi 13826 tangtx 13828 sincos4thpi 13830 pigt3 13834 |
Copyright terms: Public domain | W3C validator |