| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | Unicode version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9099 |
. 2
| |
| 2 | 3re 9112 |
. . 3
| |
| 3 | 1re 8073 |
. . 3
| |
| 4 | 2, 3 | readdcli 8087 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9097 df-3 9098 df-4 9099 |
| This theorem is referenced by: 4cn 9116 5re 9117 4ne0 9136 4ap0 9137 5pos 9138 2lt4 9212 1lt4 9213 4lt5 9214 3lt5 9215 2lt5 9216 1lt5 9217 4lt6 9219 3lt6 9220 4lt7 9225 3lt7 9226 4lt8 9232 3lt8 9233 4lt9 9240 3lt9 9241 8th4div3 9258 div4p1lem1div2 9293 4lt10 9641 3lt10 9642 eluz4eluz2 9690 fz0to4untppr 10248 fzo0to42pr 10351 fldiv4p1lem1div2 10450 faclbnd2 10889 4bc2eq6 10921 resqrexlemover 11354 resqrexlemcalc1 11358 resqrexlemcalc2 11359 resqrexlemcalc3 11360 resqrexlemnm 11362 resqrexlemga 11367 sqrt2gt1lt2 11393 amgm2 11462 ef01bndlem 12100 sin01bnd 12101 cos01bnd 12102 cos2bnd 12104 flodddiv4 12280 4sqlem12 12758 tsetndxnstarvndx 13059 slotsdifplendx 13075 slotsdifdsndx 13090 slotsdifunifndx 13097 dveflem 15231 sin0pilem2 15287 sinhalfpilem 15296 sincosq1lem 15330 coseq0negpitopi 15341 tangtx 15343 sincos4thpi 15345 pigt3 15349 gausslemma2dlem0d 15562 gausslemma2dlem3 15573 gausslemma2dlem4 15574 |
| Copyright terms: Public domain | W3C validator |