Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4re | Unicode version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8939 | . 2 | |
2 | 3re 8952 | . . 3 | |
3 | 1re 7919 | . . 3 | |
4 | 2, 3 | readdcli 7933 | . 2 |
5 | 1, 4 | eqeltri 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 c3 8930 c4 8931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-2 8937 df-3 8938 df-4 8939 |
This theorem is referenced by: 4cn 8956 5re 8957 4ne0 8976 4ap0 8977 5pos 8978 2lt4 9051 1lt4 9052 4lt5 9053 3lt5 9054 2lt5 9055 1lt5 9056 4lt6 9058 3lt6 9059 4lt7 9064 3lt7 9065 4lt8 9071 3lt8 9072 4lt9 9079 3lt9 9080 8th4div3 9097 div4p1lem1div2 9131 4lt10 9478 3lt10 9479 eluz4eluz2 9526 fz0to4untppr 10080 fzo0to42pr 10176 fldiv4p1lem1div2 10261 faclbnd2 10676 4bc2eq6 10708 resqrexlemover 10974 resqrexlemcalc1 10978 resqrexlemcalc2 10979 resqrexlemcalc3 10980 resqrexlemnm 10982 resqrexlemga 10987 sqrt2gt1lt2 11013 amgm2 11082 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos2bnd 11723 flodddiv4 11893 dveflem 13481 sin0pilem2 13497 sinhalfpilem 13506 sincosq1lem 13540 coseq0negpitopi 13551 tangtx 13553 sincos4thpi 13555 pigt3 13559 |
Copyright terms: Public domain | W3C validator |