Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4re | Unicode version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8918 | . 2 | |
2 | 3re 8931 | . . 3 | |
3 | 1re 7898 | . . 3 | |
4 | 2, 3 | readdcli 7912 | . 2 |
5 | 1, 4 | eqeltri 2239 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 c3 8909 c4 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-2 8916 df-3 8917 df-4 8918 |
This theorem is referenced by: 4cn 8935 5re 8936 4ne0 8955 4ap0 8956 5pos 8957 2lt4 9030 1lt4 9031 4lt5 9032 3lt5 9033 2lt5 9034 1lt5 9035 4lt6 9037 3lt6 9038 4lt7 9043 3lt7 9044 4lt8 9050 3lt8 9051 4lt9 9058 3lt9 9059 8th4div3 9076 div4p1lem1div2 9110 4lt10 9457 3lt10 9458 eluz4eluz2 9505 fz0to4untppr 10059 fzo0to42pr 10155 fldiv4p1lem1div2 10240 faclbnd2 10655 4bc2eq6 10687 resqrexlemover 10952 resqrexlemcalc1 10956 resqrexlemcalc2 10957 resqrexlemcalc3 10958 resqrexlemnm 10960 resqrexlemga 10965 sqrt2gt1lt2 10991 amgm2 11060 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos2bnd 11701 flodddiv4 11871 dveflem 13327 sin0pilem2 13343 sinhalfpilem 13352 sincosq1lem 13386 coseq0negpitopi 13397 tangtx 13399 sincos4thpi 13401 pigt3 13405 |
Copyright terms: Public domain | W3C validator |