![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4re | Unicode version |
Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
4re |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 9043 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3re 9056 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 8018 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | readdcli 8032 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-2 9041 df-3 9042 df-4 9043 |
This theorem is referenced by: 4cn 9060 5re 9061 4ne0 9080 4ap0 9081 5pos 9082 2lt4 9155 1lt4 9156 4lt5 9157 3lt5 9158 2lt5 9159 1lt5 9160 4lt6 9162 3lt6 9163 4lt7 9168 3lt7 9169 4lt8 9175 3lt8 9176 4lt9 9183 3lt9 9184 8th4div3 9201 div4p1lem1div2 9236 4lt10 9583 3lt10 9584 eluz4eluz2 9632 fz0to4untppr 10190 fzo0to42pr 10287 fldiv4p1lem1div2 10374 faclbnd2 10813 4bc2eq6 10845 resqrexlemover 11154 resqrexlemcalc1 11158 resqrexlemcalc2 11159 resqrexlemcalc3 11160 resqrexlemnm 11162 resqrexlemga 11167 sqrt2gt1lt2 11193 amgm2 11262 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos2bnd 11903 flodddiv4 12075 4sqlem12 12540 tsetndxnstarvndx 12811 slotsdifplendx 12827 slotsdifdsndx 12838 slotsdifunifndx 12845 cnfldstr 14049 dveflem 14872 sin0pilem2 14917 sinhalfpilem 14926 sincosq1lem 14960 coseq0negpitopi 14971 tangtx 14973 sincos4thpi 14975 pigt3 14979 gausslemma2dlem0d 15168 gausslemma2dlem3 15179 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |