| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4re | Unicode version | ||
| Description: The number 4 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 4re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9132 |
. 2
| |
| 2 | 3re 9145 |
. . 3
| |
| 3 | 1re 8106 |
. . 3
| |
| 4 | 2, 3 | readdcli 8120 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-2 9130 df-3 9131 df-4 9132 |
| This theorem is referenced by: 4cn 9149 5re 9150 4ne0 9169 4ap0 9170 5pos 9171 2lt4 9245 1lt4 9246 4lt5 9247 3lt5 9248 2lt5 9249 1lt5 9250 4lt6 9252 3lt6 9253 4lt7 9258 3lt7 9259 4lt8 9265 3lt8 9266 4lt9 9273 3lt9 9274 8th4div3 9291 div4p1lem1div2 9326 4lt10 9674 3lt10 9675 eluz4eluz2 9723 fz0to4untppr 10281 fzo0to42pr 10386 fldiv4p1lem1div2 10485 faclbnd2 10924 4bc2eq6 10956 resqrexlemover 11436 resqrexlemcalc1 11440 resqrexlemcalc2 11441 resqrexlemcalc3 11442 resqrexlemnm 11444 resqrexlemga 11449 sqrt2gt1lt2 11475 amgm2 11544 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 cos2bnd 12186 flodddiv4 12362 4sqlem12 12840 tsetndxnstarvndx 13141 slotsdifplendx 13157 slotsdifdsndx 13172 slotsdifunifndx 13179 dveflem 15313 sin0pilem2 15369 sinhalfpilem 15378 sincosq1lem 15412 coseq0negpitopi 15423 tangtx 15425 sincos4thpi 15427 pigt3 15431 gausslemma2dlem0d 15644 gausslemma2dlem3 15655 gausslemma2dlem4 15656 |
| Copyright terms: Public domain | W3C validator |