ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p2e8 Unicode version

Theorem 6p2e8 9134
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8  |-  ( 6  +  2 )  =  8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 9043 . . . . 5  |-  2  =  ( 1  +  1 )
21oveq2i 5930 . . . 4  |-  ( 6  +  2 )  =  ( 6  +  ( 1  +  1 ) )
3 6cn 9066 . . . . 5  |-  6  e.  CC
4 ax-1cn 7967 . . . . 5  |-  1  e.  CC
53, 4, 4addassi 8029 . . . 4  |-  ( ( 6  +  1 )  +  1 )  =  ( 6  +  ( 1  +  1 ) )
62, 5eqtr4i 2217 . . 3  |-  ( 6  +  2 )  =  ( ( 6  +  1 )  +  1 )
7 df-7 9048 . . . 4  |-  7  =  ( 6  +  1 )
87oveq1i 5929 . . 3  |-  ( 7  +  1 )  =  ( ( 6  +  1 )  +  1 )
96, 8eqtr4i 2217 . 2  |-  ( 6  +  2 )  =  ( 7  +  1 )
10 df-8 9049 . 2  |-  8  =  ( 7  +  1 )
119, 10eqtr4i 2217 1  |-  ( 6  +  2 )  =  8
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5919   1c1 7875    + caddc 7877   2c2 9035   6c6 9039   7c7 9040   8c8 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-addrcl 7971  ax-addass 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049
This theorem is referenced by:  6p3e9  9135  6t3e18  9555
  Copyright terms: Public domain W3C validator