Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6p2e8 | Unicode version |
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
6p2e8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8892 | . . . . 5 | |
2 | 1 | oveq2i 5835 | . . . 4 |
3 | 6cn 8915 | . . . . 5 | |
4 | ax-1cn 7825 | . . . . 5 | |
5 | 3, 4, 4 | addassi 7886 | . . . 4 |
6 | 2, 5 | eqtr4i 2181 | . . 3 |
7 | df-7 8897 | . . . 4 | |
8 | 7 | oveq1i 5834 | . . 3 |
9 | 6, 8 | eqtr4i 2181 | . 2 |
10 | df-8 8898 | . 2 | |
11 | 9, 10 | eqtr4i 2181 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 (class class class)co 5824 c1 7733 caddc 7735 c2 8884 c6 8888 c7 8889 c8 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-addrcl 7829 ax-addass 7834 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5135 df-fv 5178 df-ov 5827 df-2 8892 df-3 8893 df-4 8894 df-5 8895 df-6 8896 df-7 8897 df-8 8898 |
This theorem is referenced by: 6p3e9 8983 6t3e18 9399 |
Copyright terms: Public domain | W3C validator |