ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p2e8 GIF version

Theorem 6p2e8 9006
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 8916 . . . . 5 2 = (1 + 1)
21oveq2i 5853 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 8939 . . . . 5 6 ∈ ℂ
4 ax-1cn 7846 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 7907 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2189 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 8921 . . . 4 7 = (6 + 1)
87oveq1i 5852 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2189 . 2 (6 + 2) = (7 + 1)
10 df-8 8922 . 2 8 = (7 + 1)
119, 10eqtr4i 2189 1 (6 + 2) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5842  1c1 7754   + caddc 7756  2c2 8908  6c6 8912  7c7 8913  8c8 8914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-addrcl 7850  ax-addass 7855
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922
This theorem is referenced by:  6p3e9  9007  6t3e18  9426
  Copyright terms: Public domain W3C validator