ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6p2e8 GIF version

Theorem 6p2e8 9140
Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
6p2e8 (6 + 2) = 8

Proof of Theorem 6p2e8
StepHypRef Expression
1 df-2 9049 . . . . 5 2 = (1 + 1)
21oveq2i 5933 . . . 4 (6 + 2) = (6 + (1 + 1))
3 6cn 9072 . . . . 5 6 ∈ ℂ
4 ax-1cn 7972 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 8034 . . . 4 ((6 + 1) + 1) = (6 + (1 + 1))
62, 5eqtr4i 2220 . . 3 (6 + 2) = ((6 + 1) + 1)
7 df-7 9054 . . . 4 7 = (6 + 1)
87oveq1i 5932 . . 3 (7 + 1) = ((6 + 1) + 1)
96, 8eqtr4i 2220 . 2 (6 + 2) = (7 + 1)
10 df-8 9055 . 2 8 = (7 + 1)
119, 10eqtr4i 2220 1 (6 + 2) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5922  1c1 7880   + caddc 7882  2c2 9041  6c6 9045  7c7 9046  8c8 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-addrcl 7976  ax-addass 7981
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055
This theorem is referenced by:  6p3e9  9141  6t3e18  9561
  Copyright terms: Public domain W3C validator