ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan2i Unicode version

Theorem addcan2i 8154
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
addcani.1  |-  A  e.  CC
addcani.2  |-  B  e.  CC
addcani.3  |-  C  e.  CC
Assertion
Ref Expression
addcan2i  |-  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B )

Proof of Theorem addcan2i
StepHypRef Expression
1 addcani.1 . 2  |-  A  e.  CC
2 addcani.2 . 2  |-  B  e.  CC
3 addcani.3 . 2  |-  C  e.  CC
4 addcan2 8152 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
51, 2, 3, 4mp3an 1347 1  |-  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1363    e. wcel 2158  (class class class)co 5888   CCcc 7823    + caddc 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-resscn 7917  ax-1cn 7918  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator