| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcan2i | GIF version | ||
| Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addcani.1 | ⊢ 𝐴 ∈ ℂ |
| addcani.2 | ⊢ 𝐵 ∈ ℂ |
| addcani.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcan2i | ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcani.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addcani.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcani.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addcan2 8260 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | |
| 5 | 1, 2, 3, 4 | mp3an 1350 | 1 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |