![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcan2i | GIF version |
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addcani.1 | ⊢ 𝐴 ∈ ℂ |
addcani.2 | ⊢ 𝐵 ∈ ℂ |
addcani.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addcan2i | ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcani.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addcani.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcani.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addcan2 7860 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1296 | 1 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1312 ∈ wcel 1461 (class class class)co 5726 ℂcc 7539 + caddc 7544 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-resscn 7631 ax-1cn 7632 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-iota 5044 df-fv 5087 df-ov 5729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |