Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcan2i | GIF version |
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addcani.1 | ⊢ 𝐴 ∈ ℂ |
addcani.2 | ⊢ 𝐵 ∈ ℂ |
addcani.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addcan2i | ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcani.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addcani.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcani.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addcan2 8035 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1316 | 1 ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1332 ∈ wcel 2125 (class class class)co 5814 ℂcc 7709 + caddc 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |