ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcand Unicode version

Theorem addcand 8038
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addcand  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )

Proof of Theorem addcand
StepHypRef Expression
1 addcand.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addcand.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addcan 8034 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
51, 2, 3, 4syl3anc 1217 1  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 2125  (class class class)co 5814   CCcc 7709    + caddc 7714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-resscn 7803  ax-1cn 7804  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817
This theorem is referenced by:  addcanad  8040  addneintrd  8042  negeu  8045  eqneg  8584  nn0opthd  10573  cjreb  10743
  Copyright terms: Public domain W3C validator