Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcand | Unicode version |
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcand.1 | |
addcand.2 | |
addcand.3 |
Ref | Expression |
---|---|
addcand |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcand.1 | . 2 | |
2 | addcand.2 | . 2 | |
3 | addcand.3 | . 2 | |
4 | addcan 8034 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wcel 2125 (class class class)co 5814 cc 7709 caddc 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: addcanad 8040 addneintrd 8042 negeu 8045 eqneg 8584 nn0opthd 10573 cjreb 10743 |
Copyright terms: Public domain | W3C validator |