ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanad Unicode version

Theorem addcanad 8332
Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 8330. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
addcanad.4  |-  ( ph  ->  ( A  +  B
)  =  ( A  +  C ) )
Assertion
Ref Expression
addcanad  |-  ( ph  ->  B  =  C )

Proof of Theorem addcanad
StepHypRef Expression
1 addcanad.4 . 2  |-  ( ph  ->  ( A  +  B
)  =  ( A  +  C ) )
2 addcand.1 . . 3  |-  ( ph  ->  A  e.  CC )
3 addcand.2 . . 3  |-  ( ph  ->  B  e.  CC )
4 addcand.3 . . 3  |-  ( ph  ->  C  e.  CC )
52, 3, 4addcand 8330 . 2  |-  ( ph  ->  ( ( A  +  B )  =  ( A  +  C )  <-> 
B  =  C ) )
61, 5mpbid 147 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  divalglemqt  12430
  Copyright terms: Public domain W3C validator