ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemqt Unicode version

Theorem divalglemqt 12263
Description: Lemma for divalg 12268. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
Hypotheses
Ref Expression
divalglemqt.d  |-  ( ph  ->  D  e.  ZZ )
divalglemqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemqt.qt  |-  ( ph  ->  Q  =  T )
divalglemqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemqt  |-  ( ph  ->  R  =  S )

Proof of Theorem divalglemqt
StepHypRef Expression
1 divalglemqt.qt . . . 4  |-  ( ph  ->  Q  =  T )
21oveq1d 5961 . . 3  |-  ( ph  ->  ( Q  x.  D
)  =  ( T  x.  D ) )
3 divalglemqt.q . . . . 5  |-  ( ph  ->  Q  e.  ZZ )
4 divalglemqt.d . . . . 5  |-  ( ph  ->  D  e.  ZZ )
53, 4zmulcld 9503 . . . 4  |-  ( ph  ->  ( Q  x.  D
)  e.  ZZ )
65zcnd 9498 . . 3  |-  ( ph  ->  ( Q  x.  D
)  e.  CC )
72, 6eqeltrrd 2283 . 2  |-  ( ph  ->  ( T  x.  D
)  e.  CC )
8 divalglemqt.r . . 3  |-  ( ph  ->  R  e.  ZZ )
98zcnd 9498 . 2  |-  ( ph  ->  R  e.  CC )
10 divalglemqt.s . . 3  |-  ( ph  ->  S  e.  ZZ )
1110zcnd 9498 . 2  |-  ( ph  ->  S  e.  CC )
122oveq1d 5961 . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  R ) )
13 divalglemqt.eq . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
1412, 13eqtr3d 2240 . 2  |-  ( ph  ->  ( ( T  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
157, 9, 11, 14addcanad 8260 1  |-  ( ph  ->  R  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5946   CCcc 7925    + caddc 7930    x. cmul 7932   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  divalglemeunn  12265  divalglemeuneg  12267
  Copyright terms: Public domain W3C validator