ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemqt Unicode version

Theorem divalglemqt 11878
Description: Lemma for divalg 11883. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
Hypotheses
Ref Expression
divalglemqt.d  |-  ( ph  ->  D  e.  ZZ )
divalglemqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemqt.qt  |-  ( ph  ->  Q  =  T )
divalglemqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemqt  |-  ( ph  ->  R  =  S )

Proof of Theorem divalglemqt
StepHypRef Expression
1 divalglemqt.qt . . . 4  |-  ( ph  ->  Q  =  T )
21oveq1d 5868 . . 3  |-  ( ph  ->  ( Q  x.  D
)  =  ( T  x.  D ) )
3 divalglemqt.q . . . . 5  |-  ( ph  ->  Q  e.  ZZ )
4 divalglemqt.d . . . . 5  |-  ( ph  ->  D  e.  ZZ )
53, 4zmulcld 9340 . . . 4  |-  ( ph  ->  ( Q  x.  D
)  e.  ZZ )
65zcnd 9335 . . 3  |-  ( ph  ->  ( Q  x.  D
)  e.  CC )
72, 6eqeltrrd 2248 . 2  |-  ( ph  ->  ( T  x.  D
)  e.  CC )
8 divalglemqt.r . . 3  |-  ( ph  ->  R  e.  ZZ )
98zcnd 9335 . 2  |-  ( ph  ->  R  e.  CC )
10 divalglemqt.s . . 3  |-  ( ph  ->  S  e.  ZZ )
1110zcnd 9335 . 2  |-  ( ph  ->  S  e.  CC )
122oveq1d 5868 . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  R ) )
13 divalglemqt.eq . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
1412, 13eqtr3d 2205 . 2  |-  ( ph  ->  ( ( T  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
157, 9, 11, 14addcanad 8105 1  |-  ( ph  ->  R  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772    + caddc 7777    x. cmul 7779   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  divalglemeunn  11880  divalglemeuneg  11882
  Copyright terms: Public domain W3C validator