| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divalglemqt | Unicode version | ||
| Description: Lemma for divalg 11976. The |
| Ref | Expression |
|---|---|
| divalglemqt.d |
|
| divalglemqt.r |
|
| divalglemqt.s |
|
| divalglemqt.q |
|
| divalglemqt.t |
|
| divalglemqt.qt |
|
| divalglemqt.eq |
|
| Ref | Expression |
|---|---|
| divalglemqt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglemqt.qt |
. . . 4
| |
| 2 | 1 | oveq1d 5919 |
. . 3
|
| 3 | divalglemqt.q |
. . . . 5
| |
| 4 | divalglemqt.d |
. . . . 5
| |
| 5 | 3, 4 | zmulcld 9422 |
. . . 4
|
| 6 | 5 | zcnd 9417 |
. . 3
|
| 7 | 2, 6 | eqeltrrd 2267 |
. 2
|
| 8 | divalglemqt.r |
. . 3
| |
| 9 | 8 | zcnd 9417 |
. 2
|
| 10 | divalglemqt.s |
. . 3
| |
| 11 | 10 | zcnd 9417 |
. 2
|
| 12 | 2 | oveq1d 5919 |
. . 3
|
| 13 | divalglemqt.eq |
. . 3
| |
| 14 | 12, 13 | eqtr3d 2224 |
. 2
|
| 15 | 7, 9, 11, 14 | addcanad 8184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-setind 4561 ax-cnex 7942 ax-resscn 7943 ax-1cn 7944 ax-1re 7945 ax-icn 7946 ax-addcl 7947 ax-addrcl 7948 ax-mulcl 7949 ax-mulrcl 7950 ax-addcom 7951 ax-mulcom 7952 ax-addass 7953 ax-mulass 7954 ax-distr 7955 ax-i2m1 7956 ax-1rid 7958 ax-0id 7959 ax-rnegex 7960 ax-cnre 7962 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3150 df-un 3152 df-in 3154 df-ss 3161 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-iota 5203 df-fun 5244 df-fv 5250 df-riota 5859 df-ov 5907 df-oprab 5908 df-mpo 5909 df-sub 8171 df-neg 8172 df-inn 8961 df-n0 9218 df-z 9295 |
| This theorem is referenced by: divalglemeunn 11973 divalglemeuneg 11975 |
| Copyright terms: Public domain | W3C validator |