ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemqt Unicode version

Theorem divalglemqt 11971
Description: Lemma for divalg 11976. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
Hypotheses
Ref Expression
divalglemqt.d  |-  ( ph  ->  D  e.  ZZ )
divalglemqt.r  |-  ( ph  ->  R  e.  ZZ )
divalglemqt.s  |-  ( ph  ->  S  e.  ZZ )
divalglemqt.q  |-  ( ph  ->  Q  e.  ZZ )
divalglemqt.t  |-  ( ph  ->  T  e.  ZZ )
divalglemqt.qt  |-  ( ph  ->  Q  =  T )
divalglemqt.eq  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
Assertion
Ref Expression
divalglemqt  |-  ( ph  ->  R  =  S )

Proof of Theorem divalglemqt
StepHypRef Expression
1 divalglemqt.qt . . . 4  |-  ( ph  ->  Q  =  T )
21oveq1d 5919 . . 3  |-  ( ph  ->  ( Q  x.  D
)  =  ( T  x.  D ) )
3 divalglemqt.q . . . . 5  |-  ( ph  ->  Q  e.  ZZ )
4 divalglemqt.d . . . . 5  |-  ( ph  ->  D  e.  ZZ )
53, 4zmulcld 9422 . . . 4  |-  ( ph  ->  ( Q  x.  D
)  e.  ZZ )
65zcnd 9417 . . 3  |-  ( ph  ->  ( Q  x.  D
)  e.  CC )
72, 6eqeltrrd 2267 . 2  |-  ( ph  ->  ( T  x.  D
)  e.  CC )
8 divalglemqt.r . . 3  |-  ( ph  ->  R  e.  ZZ )
98zcnd 9417 . 2  |-  ( ph  ->  R  e.  CC )
10 divalglemqt.s . . 3  |-  ( ph  ->  S  e.  ZZ )
1110zcnd 9417 . 2  |-  ( ph  ->  S  e.  CC )
122oveq1d 5919 . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  R ) )
13 divalglemqt.eq . . 3  |-  ( ph  ->  ( ( Q  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
1412, 13eqtr3d 2224 . 2  |-  ( ph  ->  ( ( T  x.  D )  +  R
)  =  ( ( T  x.  D )  +  S ) )
157, 9, 11, 14addcanad 8184 1  |-  ( ph  ->  R  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160  (class class class)co 5904   CCcc 7849    + caddc 7854    x. cmul 7856   ZZcz 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-setind 4561  ax-cnex 7942  ax-resscn 7943  ax-1cn 7944  ax-1re 7945  ax-icn 7946  ax-addcl 7947  ax-addrcl 7948  ax-mulcl 7949  ax-mulrcl 7950  ax-addcom 7951  ax-mulcom 7952  ax-addass 7953  ax-mulass 7954  ax-distr 7955  ax-i2m1 7956  ax-1rid 7958  ax-0id 7959  ax-rnegex 7960  ax-cnre 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-dif 3150  df-un 3152  df-in 3154  df-ss 3161  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-br 4026  df-opab 4087  df-id 4318  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-iota 5203  df-fun 5244  df-fv 5250  df-riota 5859  df-ov 5907  df-oprab 5908  df-mpo 5909  df-sub 8171  df-neg 8172  df-inn 8961  df-n0 9218  df-z 9295
This theorem is referenced by:  divalglemeunn  11973  divalglemeuneg  11975
  Copyright terms: Public domain W3C validator