ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan2d Unicode version

Theorem addcan2d 7667
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcand.1  |-  ( ph  ->  A  e.  CC )
addcand.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addcan2d  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )

Proof of Theorem addcan2d
StepHypRef Expression
1 addcand.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addcand.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addcan2 7663 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
51, 2, 3, 4syl3anc 1174 1  |-  ( ph  ->  ( ( A  +  C )  =  ( B  +  C )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7348    + caddc 7353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7437  ax-1cn 7438  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655
This theorem is referenced by:  addcan2ad  7669  addneintr2d  7671  nn0opthd  10130
  Copyright terms: Public domain W3C validator