ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanad GIF version

Theorem addcanad 8084
Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 8082. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1 (𝜑𝐴 ∈ ℂ)
addcand.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
addcanad.4 (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
Assertion
Ref Expression
addcanad (𝜑𝐵 = 𝐶)

Proof of Theorem addcanad
StepHypRef Expression
1 addcanad.4 . 2 (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
2 addcand.1 . . 3 (𝜑𝐴 ∈ ℂ)
3 addcand.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 addcand.3 . . 3 (𝜑𝐶 ∈ ℂ)
52, 3, 4addcand 8082 . 2 (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
61, 5mpbid 146 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  divalglemqt  11856
  Copyright terms: Public domain W3C validator