ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq Unicode version

Theorem addclnq 7324
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
addclnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )

Proof of Theorem addclnq
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7297 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 5857 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  +Q  [ <. z ,  w >. ]  ~Q  ) )
32eleq1d 2239 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
4 oveq2 5858 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  +Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  +Q  B ) )
54eleq1d 2239 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  +Q  [
<. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  +Q  B )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
6 addpipqqs 7319 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
7 mulclpi 7277 . . . . . . . 8  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
8 mulclpi 7277 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
9 addclpi 7276 . . . . . . . 8  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  ->  ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N. )
107, 8, 9syl2an 287 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
1110an42s 584 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
12 mulclpi 7277 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
1312ad2ant2l 505 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
1411, 13jca 304 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
15 opelxpi 4641 . . . . 5  |-  ( ( ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N.  /\  ( y  .N  w
)  e.  N. )  -> 
<. ( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. ) )
16 enqex 7309 . . . . . 6  |-  ~Q  e.  _V
1716ecelqsi 6563 . . . . 5  |-  ( <.
( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
1814, 15, 173syl 17 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
196, 18eqeltrd 2247 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
201, 3, 5, 192ecoptocl 6597 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
2120, 1eleqtrrdi 2264 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   <.cop 3584    X. cxp 4607  (class class class)co 5850   [cec 6507   /.cqs 6508   N.cnpi 7221    +N cpli 7222    .N cmi 7223    ~Q ceq 7228   Q.cnq 7229    +Q cplq 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-plpq 7293  df-enq 7296  df-nqqs 7297  df-plqqs 7298
This theorem is referenced by:  ltaddnq  7356  halfnqq  7359  ltbtwnnqq  7364  prarloclemcalc  7451  addnqprl  7478  addnqpru  7479  addlocprlemeqgt  7481  addlocprlemgt  7483  addlocprlem  7484  addclpr  7486  plpvlu  7487  dmplp  7489  addnqprlemrl  7506  addnqprlemru  7507  addnqprlemfl  7508  addnqprlemfu  7509  addnqpr  7510  addassprg  7528  distrlem1prl  7531  distrlem1pru  7532  distrlem4prl  7533  distrlem4pru  7534  distrlem5prl  7535  distrlem5pru  7536  ltaddpr  7546  ltexprlemloc  7556  ltexprlemfl  7558  ltexprlemrl  7559  ltexprlemfu  7560  ltexprlemru  7561  addcanprleml  7563  addcanprlemu  7564  recexprlemm  7573  aptiprleml  7588  aptiprlemu  7589  caucvgprlemcanl  7593  cauappcvgprlemm  7594  cauappcvgprlemdisj  7600  cauappcvgprlemloc  7601  cauappcvgprlemladdfu  7603  cauappcvgprlemladdfl  7604  cauappcvgprlemladdru  7605  cauappcvgprlemladdrl  7606  cauappcvgprlem1  7608  cauappcvgprlem2  7609  caucvgprlemnkj  7615  caucvgprlemnbj  7616  caucvgprlemm  7617  caucvgprlemloc  7624  caucvgprlemladdfu  7626  caucvgprlemladdrl  7627  caucvgprlem2  7629  caucvgprprlemloccalc  7633  caucvgprprlemml  7643  caucvgprprlemmu  7644  caucvgprprlemopl  7646  caucvgprprlemloc  7652  suplocexprlemmu  7667
  Copyright terms: Public domain W3C validator