ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq Unicode version

Theorem addclnq 7501
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
addclnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )

Proof of Theorem addclnq
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7474 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 5961 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  +Q  [ <. z ,  w >. ]  ~Q  ) )
32eleq1d 2275 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
4 oveq2 5962 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  +Q  [ <. z ,  w >. ]  ~Q  )  =  ( A  +Q  B ) )
54eleq1d 2275 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  +Q  [
<. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  )  <->  ( A  +Q  B )  e.  ( ( N.  X.  N. ) /.  ~Q  ) ) )
6 addpipqqs 7496 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
7 mulclpi 7454 . . . . . . . 8  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
8 mulclpi 7454 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
9 addclpi 7453 . . . . . . . 8  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  ->  ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N. )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
1110an42s 589 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  e. 
N. )
12 mulclpi 7454 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
1312ad2ant2l 508 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  e.  N. )
1411, 13jca 306 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
( x  .N  w
)  +N  ( y  .N  z ) )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
15 opelxpi 4712 . . . . 5  |-  ( ( ( ( x  .N  w )  +N  (
y  .N  z ) )  e.  N.  /\  ( y  .N  w
)  e.  N. )  -> 
<. ( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. ) )
16 enqex 7486 . . . . . 6  |-  ~Q  e.  _V
1716ecelqsi 6686 . . . . 5  |-  ( <.
( ( x  .N  w )  +N  (
y  .N  z ) ) ,  ( y  .N  w ) >.  e.  ( N.  X.  N. )  ->  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
1814, 15, 173syl 17 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
196, 18eqeltrd 2283 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
201, 3, 5, 192ecoptocl 6720 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
2120, 1eleqtrrdi 2300 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   <.cop 3638    X. cxp 4678  (class class class)co 5954   [cec 6628   /.cqs 6629   N.cnpi 7398    +N cpli 7399    .N cmi 7400    ~Q ceq 7405   Q.cnq 7406    +Q cplq 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-plpq 7470  df-enq 7473  df-nqqs 7474  df-plqqs 7475
This theorem is referenced by:  ltaddnq  7533  halfnqq  7536  ltbtwnnqq  7541  prarloclemcalc  7628  addnqprl  7655  addnqpru  7656  addlocprlemeqgt  7658  addlocprlemgt  7660  addlocprlem  7661  addclpr  7663  plpvlu  7664  dmplp  7666  addnqprlemrl  7683  addnqprlemru  7684  addnqprlemfl  7685  addnqprlemfu  7686  addnqpr  7687  addassprg  7705  distrlem1prl  7708  distrlem1pru  7709  distrlem4prl  7710  distrlem4pru  7711  distrlem5prl  7712  distrlem5pru  7713  ltaddpr  7723  ltexprlemloc  7733  ltexprlemfl  7735  ltexprlemrl  7736  ltexprlemfu  7737  ltexprlemru  7738  addcanprleml  7740  addcanprlemu  7741  recexprlemm  7750  aptiprleml  7765  aptiprlemu  7766  caucvgprlemcanl  7770  cauappcvgprlemm  7771  cauappcvgprlemdisj  7777  cauappcvgprlemloc  7778  cauappcvgprlemladdfu  7780  cauappcvgprlemladdfl  7781  cauappcvgprlemladdru  7782  cauappcvgprlemladdrl  7783  cauappcvgprlem1  7785  cauappcvgprlem2  7786  caucvgprlemnkj  7792  caucvgprlemnbj  7793  caucvgprlemm  7794  caucvgprlemloc  7801  caucvgprlemladdfu  7803  caucvgprlemladdrl  7804  caucvgprlem2  7806  caucvgprprlemloccalc  7810  caucvgprprlemml  7820  caucvgprprlemmu  7821  caucvgprprlemopl  7823  caucvgprprlemloc  7829  suplocexprlemmu  7844
  Copyright terms: Public domain W3C validator