| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmsucr | Unicode version | ||
| Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmsucr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . 5
| |
| 2 | oveq2 5975 |
. . . . . 6
| |
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3 | oveq12d 5985 |
. . . . 5
|
| 5 | 1, 4 | eqeq12d 2222 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5975 |
. . . . 5
| |
| 8 | oveq2 5975 |
. . . . . 6
| |
| 9 | id 19 |
. . . . . 6
| |
| 10 | 8, 9 | oveq12d 5985 |
. . . . 5
|
| 11 | 7, 10 | eqeq12d 2222 |
. . . 4
|
| 12 | oveq2 5975 |
. . . . 5
| |
| 13 | oveq2 5975 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | oveq12d 5985 |
. . . . 5
|
| 16 | 12, 15 | eqeq12d 2222 |
. . . 4
|
| 17 | oveq2 5975 |
. . . . 5
| |
| 18 | oveq2 5975 |
. . . . . 6
| |
| 19 | id 19 |
. . . . . 6
| |
| 20 | 18, 19 | oveq12d 5985 |
. . . . 5
|
| 21 | 17, 20 | eqeq12d 2222 |
. . . 4
|
| 22 | peano2 4661 |
. . . . . . 7
| |
| 23 | nnm0 6584 |
. . . . . . 7
| |
| 24 | 22, 23 | syl 14 |
. . . . . 6
|
| 25 | nnm0 6584 |
. . . . . 6
| |
| 26 | 24, 25 | eqtr4d 2243 |
. . . . 5
|
| 27 | peano1 4660 |
. . . . . . 7
| |
| 28 | nnmcl 6590 |
. . . . . . 7
| |
| 29 | 27, 28 | mpan2 425 |
. . . . . 6
|
| 30 | nna0 6583 |
. . . . . 6
| |
| 31 | 29, 30 | syl 14 |
. . . . 5
|
| 32 | 26, 31 | eqtr4d 2243 |
. . . 4
|
| 33 | oveq1 5974 |
. . . . . 6
| |
| 34 | peano2b 4681 |
. . . . . . . 8
| |
| 35 | nnmsuc 6586 |
. . . . . . . 8
| |
| 36 | 34, 35 | sylanb 284 |
. . . . . . 7
|
| 37 | nnmcl 6590 |
. . . . . . . . . . 11
| |
| 38 | peano2b 4681 |
. . . . . . . . . . . 12
| |
| 39 | nnaass 6594 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | syl3an3b 1288 |
. . . . . . . . . . 11
|
| 41 | 37, 40 | syl3an1 1283 |
. . . . . . . . . 10
|
| 42 | 41 | 3expb 1207 |
. . . . . . . . 9
|
| 43 | 42 | anidms 397 |
. . . . . . . 8
|
| 44 | nnmsuc 6586 |
. . . . . . . . 9
| |
| 45 | 44 | oveq1d 5982 |
. . . . . . . 8
|
| 46 | nnaass 6594 |
. . . . . . . . . . . . . 14
| |
| 47 | 34, 46 | syl3an3b 1288 |
. . . . . . . . . . . . 13
|
| 48 | 37, 47 | syl3an1 1283 |
. . . . . . . . . . . 12
|
| 49 | 48 | 3expb 1207 |
. . . . . . . . . . 11
|
| 50 | 49 | an42s 589 |
. . . . . . . . . 10
|
| 51 | 50 | anidms 397 |
. . . . . . . . 9
|
| 52 | nnacom 6593 |
. . . . . . . . . . . 12
| |
| 53 | suceq 4467 |
. . . . . . . . . . . 12
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . . . . 11
|
| 55 | nnasuc 6585 |
. . . . . . . . . . 11
| |
| 56 | nnasuc 6585 |
. . . . . . . . . . . 12
| |
| 57 | 56 | ancoms 268 |
. . . . . . . . . . 11
|
| 58 | 54, 55, 57 | 3eqtr4d 2250 |
. . . . . . . . . 10
|
| 59 | 58 | oveq2d 5983 |
. . . . . . . . 9
|
| 60 | 51, 59 | eqtr4d 2243 |
. . . . . . . 8
|
| 61 | 43, 45, 60 | 3eqtr4d 2250 |
. . . . . . 7
|
| 62 | 36, 61 | eqeq12d 2222 |
. . . . . 6
|
| 63 | 33, 62 | imbitrrid 156 |
. . . . 5
|
| 64 | 63 | expcom 116 |
. . . 4
|
| 65 | 11, 16, 21, 32, 64 | finds2 4667 |
. . 3
|
| 66 | 6, 65 | vtoclga 2844 |
. 2
|
| 67 | 66 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 df-omul 6530 |
| This theorem is referenced by: nnmcom 6598 |
| Copyright terms: Public domain | W3C validator |