ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr Unicode version

Theorem nnmsucr 6634
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )

Proof of Theorem nnmsucr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . 5  |-  ( x  =  B  ->  ( suc  A  .o  x )  =  ( suc  A  .o  B ) )
2 oveq2 6009 . . . . . 6  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
3 id 19 . . . . . 6  |-  ( x  =  B  ->  x  =  B )
42, 3oveq12d 6019 . . . . 5  |-  ( x  =  B  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  B )  +o  B ) )
51, 4eqeq12d 2244 . . . 4  |-  ( x  =  B  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) )
65imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x ) )  <->  ( A  e. 
om  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) ) )
7 oveq2 6009 . . . . 5  |-  ( x  =  (/)  ->  ( suc 
A  .o  x )  =  ( suc  A  .o  (/) ) )
8 oveq2 6009 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
9 id 19 . . . . . 6  |-  ( x  =  (/)  ->  x  =  (/) )
108, 9oveq12d 6019 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  x )  +o  x )  =  ( ( A  .o  (/) )  +o  (/) ) )
117, 10eqeq12d 2244 . . . 4  |-  ( x  =  (/)  ->  ( ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x )  <->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) ) )
12 oveq2 6009 . . . . 5  |-  ( x  =  y  ->  ( suc  A  .o  x )  =  ( suc  A  .o  y ) )
13 oveq2 6009 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
14 id 19 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
1513, 14oveq12d 6019 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  y )  +o  y ) )
1612, 15eqeq12d 2244 . . . 4  |-  ( x  =  y  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y ) ) )
17 oveq2 6009 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  A  .o  x )  =  ( suc  A  .o  suc  y ) )
18 oveq2 6009 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
19 id 19 . . . . . 6  |-  ( x  =  suc  y  ->  x  =  suc  y )
2018, 19oveq12d 6019 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  +o  x
)  =  ( ( A  .o  suc  y
)  +o  suc  y
) )
2117, 20eqeq12d 2244 . . . 4  |-  ( x  =  suc  y  -> 
( ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
22 peano2 4687 . . . . . . 7  |-  ( A  e.  om  ->  suc  A  e.  om )
23 nnm0 6621 . . . . . . 7  |-  ( suc 
A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
2422, 23syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
25 nnm0 6621 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
2624, 25eqtr4d 2265 . . . . 5  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( A  .o  (/) ) )
27 peano1 4686 . . . . . . 7  |-  (/)  e.  om
28 nnmcl 6627 . . . . . . 7  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  (/) )  e.  om )
2927, 28mpan2 425 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
30 nna0 6620 . . . . . 6  |-  ( ( A  .o  (/) )  e. 
om  ->  ( ( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3129, 30syl 14 . . . . 5  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3226, 31eqtr4d 2265 . . . 4  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) )
33 oveq1 6008 . . . . . 6  |-  ( ( suc  A  .o  y
)  =  ( ( A  .o  y )  +o  y )  -> 
( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y
)  +o  y )  +o  suc  A ) )
34 peano2b 4707 . . . . . . . 8  |-  ( A  e.  om  <->  suc  A  e. 
om )
35 nnmsuc 6623 . . . . . . . 8  |-  ( ( suc  A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
3634, 35sylanb 284 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
37 nnmcl 6627 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
38 peano2b 4707 . . . . . . . . . . . 12  |-  ( y  e.  om  <->  suc  y  e. 
om )
39 nnaass 6631 . . . . . . . . . . . 12  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  suc  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
4038, 39syl3an3b 1309 . . . . . . . . . . 11  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  y )  +o  A
)  +o  suc  y
)  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4137, 40syl3an1 1304 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
42413expb 1228 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  A )  +o  suc  y )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4342anidms 397 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
44 nnmsuc 6623 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
4544oveq1d 6016 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  A
)  +o  suc  y
) )
46 nnaass 6631 . . . . . . . . . . . . . 14  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  suc  A  e.  om )  -> 
( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4734, 46syl3an3b 1309 . . . . . . . . . . . . 13  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  A  e.  om )  ->  (
( ( A  .o  y )  +o  y
)  +o  suc  A
)  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4837, 47syl3an1 1304 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  y  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
49483expb 1228 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( y  e.  om  /\  A  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5049an42s 591 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5150anidms 397 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
52 nnacom 6630 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
53 suceq 4493 . . . . . . . . . . . 12  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
5452, 53syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
55 nnasuc 6622 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
56 nnasuc 6622 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5756ancoms 268 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5854, 55, 573eqtr4d 2272 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( y  +o  suc  A
) )
5958oveq2d 6017 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  +o  ( A  +o  suc  y ) )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
6051, 59eqtr4d 2265 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
6143, 45, 603eqtr4d 2272 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  y
)  +o  suc  A
) )
6236, 61eqeq12d 2244 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y )  <->  ( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y )  +o  y )  +o 
suc  A ) ) )
6333, 62imbitrrid 156 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
6463expcom 116 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) ) )
6511, 16, 21, 32, 64finds2 4693 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x ) ) )
666, 65vtoclga 2867 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  B
)  =  ( ( A  .o  B )  +o  B ) ) )
6766impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   (/)c0 3491   suc csuc 4456   omcom 4682  (class class class)co 6001    +o coa 6559    .o comu 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567
This theorem is referenced by:  nnmcom  6635
  Copyright terms: Public domain W3C validator