Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axdistr | Unicode version |
Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7857 be used later. Instead, use adddi 7885. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axdistr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7782 | . 2 | |
2 | addcnsrec 7783 | . 2 | |
3 | mulcnsrec 7784 | . 2 | |
4 | mulcnsrec 7784 | . 2 | |
5 | mulcnsrec 7784 | . 2 | |
6 | addcnsrec 7783 | . 2 | |
7 | addclsr 7694 | . . . 4 | |
8 | addclsr 7694 | . . . 4 | |
9 | 7, 8 | anim12i 336 | . . 3 |
10 | 9 | an4s 578 | . 2 |
11 | mulclsr 7695 | . . . . 5 | |
12 | m1r 7693 | . . . . . 6 | |
13 | mulclsr 7695 | . . . . . 6 | |
14 | mulclsr 7695 | . . . . . 6 | |
15 | 12, 13, 14 | sylancr 411 | . . . . 5 |
16 | addclsr 7694 | . . . . 5 | |
17 | 11, 15, 16 | syl2an 287 | . . . 4 |
18 | 17 | an4s 578 | . . 3 |
19 | mulclsr 7695 | . . . . 5 | |
20 | mulclsr 7695 | . . . . 5 | |
21 | addclsr 7694 | . . . . 5 | |
22 | 19, 20, 21 | syl2anr 288 | . . . 4 |
23 | 22 | an42s 579 | . . 3 |
24 | 18, 23 | jca 304 | . 2 |
25 | mulclsr 7695 | . . . . 5 | |
26 | mulclsr 7695 | . . . . . 6 | |
27 | mulclsr 7695 | . . . . . 6 | |
28 | 12, 26, 27 | sylancr 411 | . . . . 5 |
29 | addclsr 7694 | . . . . 5 | |
30 | 25, 28, 29 | syl2an 287 | . . . 4 |
31 | 30 | an4s 578 | . . 3 |
32 | mulclsr 7695 | . . . . 5 | |
33 | mulclsr 7695 | . . . . 5 | |
34 | addclsr 7694 | . . . . 5 | |
35 | 32, 33, 34 | syl2anr 288 | . . . 4 |
36 | 35 | an42s 579 | . . 3 |
37 | 31, 36 | jca 304 | . 2 |
38 | simp1l 1011 | . . . . 5 | |
39 | simp2l 1013 | . . . . 5 | |
40 | simp3l 1015 | . . . . 5 | |
41 | distrsrg 7700 | . . . . 5 | |
42 | 38, 39, 40, 41 | syl3anc 1228 | . . . 4 |
43 | simp1r 1012 | . . . . . . 7 | |
44 | simp2r 1014 | . . . . . . 7 | |
45 | simp3r 1016 | . . . . . . 7 | |
46 | distrsrg 7700 | . . . . . . 7 | |
47 | 43, 44, 45, 46 | syl3anc 1228 | . . . . . 6 |
48 | 47 | oveq2d 5858 | . . . . 5 |
49 | 12 | a1i 9 | . . . . . 6 |
50 | 43, 44, 13 | syl2anc 409 | . . . . . 6 |
51 | 43, 45, 26 | syl2anc 409 | . . . . . 6 |
52 | distrsrg 7700 | . . . . . 6 | |
53 | 49, 50, 51, 52 | syl3anc 1228 | . . . . 5 |
54 | 48, 53 | eqtrd 2198 | . . . 4 |
55 | 42, 54 | oveq12d 5860 | . . 3 |
56 | 38, 39, 11 | syl2anc 409 | . . . 4 |
57 | 38, 40, 25 | syl2anc 409 | . . . 4 |
58 | 12, 50, 14 | sylancr 411 | . . . 4 |
59 | addcomsrg 7696 | . . . . 5 | |
60 | 59 | adantl 275 | . . . 4 |
61 | addasssrg 7697 | . . . . 5 | |
62 | 61 | adantl 275 | . . . 4 |
63 | 12, 51, 27 | sylancr 411 | . . . 4 |
64 | addclsr 7694 | . . . . 5 | |
65 | 64 | adantl 275 | . . . 4 |
66 | 56, 57, 58, 60, 62, 63, 65 | caov4d 6026 | . . 3 |
67 | 55, 66 | eqtrd 2198 | . 2 |
68 | distrsrg 7700 | . . . . 5 | |
69 | 43, 39, 40, 68 | syl3anc 1228 | . . . 4 |
70 | distrsrg 7700 | . . . . 5 | |
71 | 38, 44, 45, 70 | syl3anc 1228 | . . . 4 |
72 | 69, 71 | oveq12d 5860 | . . 3 |
73 | 43, 39, 19 | syl2anc 409 | . . . 4 |
74 | 43, 40, 32 | syl2anc 409 | . . . 4 |
75 | 38, 44, 20 | syl2anc 409 | . . . 4 |
76 | 38, 45, 33 | syl2anc 409 | . . . 4 |
77 | 73, 74, 75, 60, 62, 76, 65 | caov4d 6026 | . . 3 |
78 | 72, 77 | eqtrd 2198 | . 2 |
79 | 1, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78 | ecovidi 6613 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cep 4265 ccnv 4603 (class class class)co 5842 cnr 7238 cm1r 7241 cplr 7242 cmr 7243 cc 7751 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-m1r 7674 df-c 7759 df-add 7764 df-mul 7765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |