Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axdistr | Unicode version |
Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7878 be used later. Instead, use adddi 7906. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axdistr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7803 | . 2 | |
2 | addcnsrec 7804 | . 2 | |
3 | mulcnsrec 7805 | . 2 | |
4 | mulcnsrec 7805 | . 2 | |
5 | mulcnsrec 7805 | . 2 | |
6 | addcnsrec 7804 | . 2 | |
7 | addclsr 7715 | . . . 4 | |
8 | addclsr 7715 | . . . 4 | |
9 | 7, 8 | anim12i 336 | . . 3 |
10 | 9 | an4s 583 | . 2 |
11 | mulclsr 7716 | . . . . 5 | |
12 | m1r 7714 | . . . . . 6 | |
13 | mulclsr 7716 | . . . . . 6 | |
14 | mulclsr 7716 | . . . . . 6 | |
15 | 12, 13, 14 | sylancr 412 | . . . . 5 |
16 | addclsr 7715 | . . . . 5 | |
17 | 11, 15, 16 | syl2an 287 | . . . 4 |
18 | 17 | an4s 583 | . . 3 |
19 | mulclsr 7716 | . . . . 5 | |
20 | mulclsr 7716 | . . . . 5 | |
21 | addclsr 7715 | . . . . 5 | |
22 | 19, 20, 21 | syl2anr 288 | . . . 4 |
23 | 22 | an42s 584 | . . 3 |
24 | 18, 23 | jca 304 | . 2 |
25 | mulclsr 7716 | . . . . 5 | |
26 | mulclsr 7716 | . . . . . 6 | |
27 | mulclsr 7716 | . . . . . 6 | |
28 | 12, 26, 27 | sylancr 412 | . . . . 5 |
29 | addclsr 7715 | . . . . 5 | |
30 | 25, 28, 29 | syl2an 287 | . . . 4 |
31 | 30 | an4s 583 | . . 3 |
32 | mulclsr 7716 | . . . . 5 | |
33 | mulclsr 7716 | . . . . 5 | |
34 | addclsr 7715 | . . . . 5 | |
35 | 32, 33, 34 | syl2anr 288 | . . . 4 |
36 | 35 | an42s 584 | . . 3 |
37 | 31, 36 | jca 304 | . 2 |
38 | simp1l 1016 | . . . . 5 | |
39 | simp2l 1018 | . . . . 5 | |
40 | simp3l 1020 | . . . . 5 | |
41 | distrsrg 7721 | . . . . 5 | |
42 | 38, 39, 40, 41 | syl3anc 1233 | . . . 4 |
43 | simp1r 1017 | . . . . . . 7 | |
44 | simp2r 1019 | . . . . . . 7 | |
45 | simp3r 1021 | . . . . . . 7 | |
46 | distrsrg 7721 | . . . . . . 7 | |
47 | 43, 44, 45, 46 | syl3anc 1233 | . . . . . 6 |
48 | 47 | oveq2d 5869 | . . . . 5 |
49 | 12 | a1i 9 | . . . . . 6 |
50 | 43, 44, 13 | syl2anc 409 | . . . . . 6 |
51 | 43, 45, 26 | syl2anc 409 | . . . . . 6 |
52 | distrsrg 7721 | . . . . . 6 | |
53 | 49, 50, 51, 52 | syl3anc 1233 | . . . . 5 |
54 | 48, 53 | eqtrd 2203 | . . . 4 |
55 | 42, 54 | oveq12d 5871 | . . 3 |
56 | 38, 39, 11 | syl2anc 409 | . . . 4 |
57 | 38, 40, 25 | syl2anc 409 | . . . 4 |
58 | 12, 50, 14 | sylancr 412 | . . . 4 |
59 | addcomsrg 7717 | . . . . 5 | |
60 | 59 | adantl 275 | . . . 4 |
61 | addasssrg 7718 | . . . . 5 | |
62 | 61 | adantl 275 | . . . 4 |
63 | 12, 51, 27 | sylancr 412 | . . . 4 |
64 | addclsr 7715 | . . . . 5 | |
65 | 64 | adantl 275 | . . . 4 |
66 | 56, 57, 58, 60, 62, 63, 65 | caov4d 6037 | . . 3 |
67 | 55, 66 | eqtrd 2203 | . 2 |
68 | distrsrg 7721 | . . . . 5 | |
69 | 43, 39, 40, 68 | syl3anc 1233 | . . . 4 |
70 | distrsrg 7721 | . . . . 5 | |
71 | 38, 44, 45, 70 | syl3anc 1233 | . . . 4 |
72 | 69, 71 | oveq12d 5871 | . . 3 |
73 | 43, 39, 19 | syl2anc 409 | . . . 4 |
74 | 43, 40, 32 | syl2anc 409 | . . . 4 |
75 | 38, 44, 20 | syl2anc 409 | . . . 4 |
76 | 38, 45, 33 | syl2anc 409 | . . . 4 |
77 | 73, 74, 75, 60, 62, 76, 65 | caov4d 6037 | . . 3 |
78 | 72, 77 | eqtrd 2203 | . 2 |
79 | 1, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78 | ecovidi 6625 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cep 4272 ccnv 4610 (class class class)co 5853 cnr 7259 cm1r 7262 cplr 7263 cmr 7264 cc 7772 caddc 7777 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-enr 7688 df-nr 7689 df-plr 7690 df-mr 7691 df-m1r 7695 df-c 7780 df-add 7785 df-mul 7786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |