| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axdistr | Unicode version | ||
| Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8099 be used later. Instead, use adddi 8127. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axdistr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 8024 |
. 2
| |
| 2 | addcnsrec 8025 |
. 2
| |
| 3 | mulcnsrec 8026 |
. 2
| |
| 4 | mulcnsrec 8026 |
. 2
| |
| 5 | mulcnsrec 8026 |
. 2
| |
| 6 | addcnsrec 8025 |
. 2
| |
| 7 | addclsr 7936 |
. . . 4
| |
| 8 | addclsr 7936 |
. . . 4
| |
| 9 | 7, 8 | anim12i 338 |
. . 3
|
| 10 | 9 | an4s 590 |
. 2
|
| 11 | mulclsr 7937 |
. . . . 5
| |
| 12 | m1r 7935 |
. . . . . 6
| |
| 13 | mulclsr 7937 |
. . . . . 6
| |
| 14 | mulclsr 7937 |
. . . . . 6
| |
| 15 | 12, 13, 14 | sylancr 414 |
. . . . 5
|
| 16 | addclsr 7936 |
. . . . 5
| |
| 17 | 11, 15, 16 | syl2an 289 |
. . . 4
|
| 18 | 17 | an4s 590 |
. . 3
|
| 19 | mulclsr 7937 |
. . . . 5
| |
| 20 | mulclsr 7937 |
. . . . 5
| |
| 21 | addclsr 7936 |
. . . . 5
| |
| 22 | 19, 20, 21 | syl2anr 290 |
. . . 4
|
| 23 | 22 | an42s 591 |
. . 3
|
| 24 | 18, 23 | jca 306 |
. 2
|
| 25 | mulclsr 7937 |
. . . . 5
| |
| 26 | mulclsr 7937 |
. . . . . 6
| |
| 27 | mulclsr 7937 |
. . . . . 6
| |
| 28 | 12, 26, 27 | sylancr 414 |
. . . . 5
|
| 29 | addclsr 7936 |
. . . . 5
| |
| 30 | 25, 28, 29 | syl2an 289 |
. . . 4
|
| 31 | 30 | an4s 590 |
. . 3
|
| 32 | mulclsr 7937 |
. . . . 5
| |
| 33 | mulclsr 7937 |
. . . . 5
| |
| 34 | addclsr 7936 |
. . . . 5
| |
| 35 | 32, 33, 34 | syl2anr 290 |
. . . 4
|
| 36 | 35 | an42s 591 |
. . 3
|
| 37 | 31, 36 | jca 306 |
. 2
|
| 38 | simp1l 1045 |
. . . . 5
| |
| 39 | simp2l 1047 |
. . . . 5
| |
| 40 | simp3l 1049 |
. . . . 5
| |
| 41 | distrsrg 7942 |
. . . . 5
| |
| 42 | 38, 39, 40, 41 | syl3anc 1271 |
. . . 4
|
| 43 | simp1r 1046 |
. . . . . . 7
| |
| 44 | simp2r 1048 |
. . . . . . 7
| |
| 45 | simp3r 1050 |
. . . . . . 7
| |
| 46 | distrsrg 7942 |
. . . . . . 7
| |
| 47 | 43, 44, 45, 46 | syl3anc 1271 |
. . . . . 6
|
| 48 | 47 | oveq2d 6016 |
. . . . 5
|
| 49 | 12 | a1i 9 |
. . . . . 6
|
| 50 | 43, 44, 13 | syl2anc 411 |
. . . . . 6
|
| 51 | 43, 45, 26 | syl2anc 411 |
. . . . . 6
|
| 52 | distrsrg 7942 |
. . . . . 6
| |
| 53 | 49, 50, 51, 52 | syl3anc 1271 |
. . . . 5
|
| 54 | 48, 53 | eqtrd 2262 |
. . . 4
|
| 55 | 42, 54 | oveq12d 6018 |
. . 3
|
| 56 | 38, 39, 11 | syl2anc 411 |
. . . 4
|
| 57 | 38, 40, 25 | syl2anc 411 |
. . . 4
|
| 58 | 12, 50, 14 | sylancr 414 |
. . . 4
|
| 59 | addcomsrg 7938 |
. . . . 5
| |
| 60 | 59 | adantl 277 |
. . . 4
|
| 61 | addasssrg 7939 |
. . . . 5
| |
| 62 | 61 | adantl 277 |
. . . 4
|
| 63 | 12, 51, 27 | sylancr 414 |
. . . 4
|
| 64 | addclsr 7936 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 56, 57, 58, 60, 62, 63, 65 | caov4d 6189 |
. . 3
|
| 67 | 55, 66 | eqtrd 2262 |
. 2
|
| 68 | distrsrg 7942 |
. . . . 5
| |
| 69 | 43, 39, 40, 68 | syl3anc 1271 |
. . . 4
|
| 70 | distrsrg 7942 |
. . . . 5
| |
| 71 | 38, 44, 45, 70 | syl3anc 1271 |
. . . 4
|
| 72 | 69, 71 | oveq12d 6018 |
. . 3
|
| 73 | 43, 39, 19 | syl2anc 411 |
. . . 4
|
| 74 | 43, 40, 32 | syl2anc 411 |
. . . 4
|
| 75 | 38, 44, 20 | syl2anc 411 |
. . . 4
|
| 76 | 38, 45, 33 | syl2anc 411 |
. . . 4
|
| 77 | 73, 74, 75, 60, 62, 76, 65 | caov4d 6189 |
. . 3
|
| 78 | 72, 77 | eqtrd 2262 |
. 2
|
| 79 | 1, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78 | ecovidi 6792 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-imp 7652 df-enr 7909 df-nr 7910 df-plr 7911 df-mr 7912 df-m1r 7916 df-c 8001 df-add 8006 df-mul 8007 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |