| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axdistr | Unicode version | ||
| Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7983 be used later. Instead, use adddi 8011. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axdistr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 7908 |
. 2
| |
| 2 | addcnsrec 7909 |
. 2
| |
| 3 | mulcnsrec 7910 |
. 2
| |
| 4 | mulcnsrec 7910 |
. 2
| |
| 5 | mulcnsrec 7910 |
. 2
| |
| 6 | addcnsrec 7909 |
. 2
| |
| 7 | addclsr 7820 |
. . . 4
| |
| 8 | addclsr 7820 |
. . . 4
| |
| 9 | 7, 8 | anim12i 338 |
. . 3
|
| 10 | 9 | an4s 588 |
. 2
|
| 11 | mulclsr 7821 |
. . . . 5
| |
| 12 | m1r 7819 |
. . . . . 6
| |
| 13 | mulclsr 7821 |
. . . . . 6
| |
| 14 | mulclsr 7821 |
. . . . . 6
| |
| 15 | 12, 13, 14 | sylancr 414 |
. . . . 5
|
| 16 | addclsr 7820 |
. . . . 5
| |
| 17 | 11, 15, 16 | syl2an 289 |
. . . 4
|
| 18 | 17 | an4s 588 |
. . 3
|
| 19 | mulclsr 7821 |
. . . . 5
| |
| 20 | mulclsr 7821 |
. . . . 5
| |
| 21 | addclsr 7820 |
. . . . 5
| |
| 22 | 19, 20, 21 | syl2anr 290 |
. . . 4
|
| 23 | 22 | an42s 589 |
. . 3
|
| 24 | 18, 23 | jca 306 |
. 2
|
| 25 | mulclsr 7821 |
. . . . 5
| |
| 26 | mulclsr 7821 |
. . . . . 6
| |
| 27 | mulclsr 7821 |
. . . . . 6
| |
| 28 | 12, 26, 27 | sylancr 414 |
. . . . 5
|
| 29 | addclsr 7820 |
. . . . 5
| |
| 30 | 25, 28, 29 | syl2an 289 |
. . . 4
|
| 31 | 30 | an4s 588 |
. . 3
|
| 32 | mulclsr 7821 |
. . . . 5
| |
| 33 | mulclsr 7821 |
. . . . 5
| |
| 34 | addclsr 7820 |
. . . . 5
| |
| 35 | 32, 33, 34 | syl2anr 290 |
. . . 4
|
| 36 | 35 | an42s 589 |
. . 3
|
| 37 | 31, 36 | jca 306 |
. 2
|
| 38 | simp1l 1023 |
. . . . 5
| |
| 39 | simp2l 1025 |
. . . . 5
| |
| 40 | simp3l 1027 |
. . . . 5
| |
| 41 | distrsrg 7826 |
. . . . 5
| |
| 42 | 38, 39, 40, 41 | syl3anc 1249 |
. . . 4
|
| 43 | simp1r 1024 |
. . . . . . 7
| |
| 44 | simp2r 1026 |
. . . . . . 7
| |
| 45 | simp3r 1028 |
. . . . . . 7
| |
| 46 | distrsrg 7826 |
. . . . . . 7
| |
| 47 | 43, 44, 45, 46 | syl3anc 1249 |
. . . . . 6
|
| 48 | 47 | oveq2d 5938 |
. . . . 5
|
| 49 | 12 | a1i 9 |
. . . . . 6
|
| 50 | 43, 44, 13 | syl2anc 411 |
. . . . . 6
|
| 51 | 43, 45, 26 | syl2anc 411 |
. . . . . 6
|
| 52 | distrsrg 7826 |
. . . . . 6
| |
| 53 | 49, 50, 51, 52 | syl3anc 1249 |
. . . . 5
|
| 54 | 48, 53 | eqtrd 2229 |
. . . 4
|
| 55 | 42, 54 | oveq12d 5940 |
. . 3
|
| 56 | 38, 39, 11 | syl2anc 411 |
. . . 4
|
| 57 | 38, 40, 25 | syl2anc 411 |
. . . 4
|
| 58 | 12, 50, 14 | sylancr 414 |
. . . 4
|
| 59 | addcomsrg 7822 |
. . . . 5
| |
| 60 | 59 | adantl 277 |
. . . 4
|
| 61 | addasssrg 7823 |
. . . . 5
| |
| 62 | 61 | adantl 277 |
. . . 4
|
| 63 | 12, 51, 27 | sylancr 414 |
. . . 4
|
| 64 | addclsr 7820 |
. . . . 5
| |
| 65 | 64 | adantl 277 |
. . . 4
|
| 66 | 56, 57, 58, 60, 62, 63, 65 | caov4d 6108 |
. . 3
|
| 67 | 55, 66 | eqtrd 2229 |
. 2
|
| 68 | distrsrg 7826 |
. . . . 5
| |
| 69 | 43, 39, 40, 68 | syl3anc 1249 |
. . . 4
|
| 70 | distrsrg 7826 |
. . . . 5
| |
| 71 | 38, 44, 45, 70 | syl3anc 1249 |
. . . 4
|
| 72 | 69, 71 | oveq12d 5940 |
. . 3
|
| 73 | 43, 39, 19 | syl2anc 411 |
. . . 4
|
| 74 | 43, 40, 32 | syl2anc 411 |
. . . 4
|
| 75 | 38, 44, 20 | syl2anc 411 |
. . . 4
|
| 76 | 38, 45, 33 | syl2anc 411 |
. . . 4
|
| 77 | 73, 74, 75, 60, 62, 76, 65 | caov4d 6108 |
. . 3
|
| 78 | 72, 77 | eqtrd 2229 |
. 2
|
| 79 | 1, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78 | ecovidi 6706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-imp 7536 df-enr 7793 df-nr 7794 df-plr 7795 df-mr 7796 df-m1r 7800 df-c 7885 df-add 7890 df-mul 7891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |