ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axdistr Unicode version

Theorem axdistr 8007
Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8049 be used later. Instead, use adddi 8077. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )

Proof of Theorem axdistr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7974 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 addcnsrec 7975 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  +  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( z  +R  v
) ,  ( w  +R  u ) >. ] `'  _E  )
3 mulcnsrec 7976 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( z  +R  v )  e.  R.  /\  ( w  +R  u
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. ( z  +R  v ) ,  ( w  +R  u )
>. ] `'  _E  )  =  [ <. ( ( x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) ) ,  ( ( y  .R  ( z  +R  v ) )  +R  ( x  .R  ( w  +R  u
) ) ) >. ] `'  _E  )
4 mulcnsrec 7976 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
5 mulcnsrec 7976 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) ) ,  ( ( y  .R  v
)  +R  ( x  .R  u ) )
>. ] `'  _E  )
6 addcnsrec 7975 . 2  |-  ( ( ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R.  /\  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )  /\  ( ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R.  /\  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
)  ->  ( [ <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. ] `'  _E  +  [ <. (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ,  ( ( y  .R  v )  +R  ( x  .R  u
) ) >. ] `'  _E  )  =  [ <. ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ) ,  ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  +R  ( ( y  .R  v )  +R  ( x  .R  u
) ) ) >. ] `'  _E  )
7 addclsr 7886 . . . 4  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
8 addclsr 7886 . . . 4  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
97, 8anim12i 338 . . 3  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
109an4s 588 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
11 mulclsr 7887 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
12 m1r 7885 . . . . . 6  |-  -1R  e.  R.
13 mulclsr 7887 . . . . . 6  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
14 mulclsr 7887 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
1512, 13, 14sylancr 414 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
16 addclsr 7886 . . . . 5  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
1711, 15, 16syl2an 289 . . . 4  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
1817an4s 588 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
19 mulclsr 7887 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
20 mulclsr 7887 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
21 addclsr 7886 . . . . 5  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
2219, 20, 21syl2anr 290 . . . 4  |-  ( ( ( x  e.  R.  /\  w  e.  R. )  /\  ( y  e.  R.  /\  z  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2322an42s 589 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2418, 23jca 306 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. ) )
25 mulclsr 7887 . . . . 5  |-  ( ( x  e.  R.  /\  v  e.  R. )  ->  ( x  .R  v
)  e.  R. )
26 mulclsr 7887 . . . . . 6  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( y  .R  u
)  e.  R. )
27 mulclsr 7887 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  u
)  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
2812, 26, 27sylancr 414 . . . . 5  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
29 addclsr 7886 . . . . 5  |-  ( ( ( x  .R  v
)  e.  R.  /\  ( -1R  .R  ( y  .R  u ) )  e.  R. )  -> 
( ( x  .R  v )  +R  ( -1R  .R  ( y  .R  u ) ) )  e.  R. )
3025, 28, 29syl2an 289 . . . 4  |-  ( ( ( x  e.  R.  /\  v  e.  R. )  /\  ( y  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
3130an4s 588 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
32 mulclsr 7887 . . . . 5  |-  ( ( y  e.  R.  /\  v  e.  R. )  ->  ( y  .R  v
)  e.  R. )
33 mulclsr 7887 . . . . 5  |-  ( ( x  e.  R.  /\  u  e.  R. )  ->  ( x  .R  u
)  e.  R. )
34 addclsr 7886 . . . . 5  |-  ( ( ( y  .R  v
)  e.  R.  /\  ( x  .R  u
)  e.  R. )  ->  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
3532, 33, 34syl2anr 290 . . . 4  |-  ( ( ( x  e.  R.  /\  u  e.  R. )  /\  ( y  e.  R.  /\  v  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3635an42s 589 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3731, 36jca 306 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) )  e.  R.  /\  (
( y  .R  v
)  +R  ( x  .R  u ) )  e.  R. ) )
38 simp1l 1024 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  x  e.  R. )
39 simp2l 1026 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  z  e.  R. )
40 simp3l 1028 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  v  e.  R. )
41 distrsrg 7892 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R.  /\  v  e.  R. )  ->  (
x  .R  ( z  +R  v ) )  =  ( ( x  .R  z )  +R  (
x  .R  v )
) )
4238, 39, 40, 41syl3anc 1250 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( z  +R  v
) )  =  ( ( x  .R  z
)  +R  ( x  .R  v ) ) )
43 simp1r 1025 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  y  e.  R. )
44 simp2r 1027 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  w  e.  R. )
45 simp3r 1029 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  u  e.  R. )
46 distrsrg 7892 . . . . . . 7  |-  ( ( y  e.  R.  /\  w  e.  R.  /\  u  e.  R. )  ->  (
y  .R  ( w  +R  u ) )  =  ( ( y  .R  w )  +R  (
y  .R  u )
) )
4743, 44, 45, 46syl3anc 1250 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( w  +R  u
) )  =  ( ( y  .R  w
)  +R  ( y  .R  u ) ) )
4847oveq2d 5973 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  +R  u ) ) )  =  ( -1R  .R  ( ( y  .R  w )  +R  ( y  .R  u ) ) ) )
4912a1i 9 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  -1R  e.  R. )
5043, 44, 13syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  w )  e.  R. )
5143, 45, 26syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  u )  e.  R. )
52 distrsrg 7892 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R.  /\  ( y  .R  u
)  e.  R. )  ->  ( -1R  .R  (
( y  .R  w
)  +R  ( y  .R  u ) ) )  =  ( ( -1R  .R  ( y  .R  w ) )  +R  ( -1R  .R  ( y  .R  u
) ) ) )
5349, 50, 51, 52syl3anc 1250 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  w )  +R  (
y  .R  u )
) )  =  ( ( -1R  .R  (
y  .R  w )
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
5448, 53eqtrd 2239 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  +R  u ) ) )  =  ( ( -1R  .R  (
y  .R  w )
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
5542, 54oveq12d 5975 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) )  =  ( ( ( x  .R  z
)  +R  ( x  .R  v ) )  +R  ( ( -1R 
.R  ( y  .R  w ) )  +R  ( -1R  .R  (
y  .R  u )
) ) ) )
5638, 39, 11syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  z )  e.  R. )
5738, 40, 25syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  v )  e.  R. )
5812, 50, 14sylancr 414 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  w
) )  e.  R. )
59 addcomsrg 7888 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
6059adantl 277 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  =  ( g  +R  f ) )
61 addasssrg 7889 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
6261adantl 277 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
6312, 51, 27sylancr 414 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  u
) )  e.  R. )
64 addclsr 7886 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  e.  R. )
6564adantl 277 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  e.  R. )
6656, 57, 58, 60, 62, 63, 65caov4d 6144 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( x  .R  v ) )  +R  ( ( -1R 
.R  ( y  .R  w ) )  +R  ( -1R  .R  (
y  .R  u )
) ) )  =  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ) )
6755, 66eqtrd 2239 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) )  =  ( ( ( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  +R  ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) ) ) )
68 distrsrg 7892 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R.  /\  v  e.  R. )  ->  (
y  .R  ( z  +R  v ) )  =  ( ( y  .R  z )  +R  (
y  .R  v )
) )
6943, 39, 40, 68syl3anc 1250 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( z  +R  v
) )  =  ( ( y  .R  z
)  +R  ( y  .R  v ) ) )
70 distrsrg 7892 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R.  /\  u  e.  R. )  ->  (
x  .R  ( w  +R  u ) )  =  ( ( x  .R  w )  +R  (
x  .R  u )
) )
7138, 44, 45, 70syl3anc 1250 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( w  +R  u
) )  =  ( ( x  .R  w
)  +R  ( x  .R  u ) ) )
7269, 71oveq12d 5975 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  ( z  +R  v ) )  +R  ( x  .R  (
w  +R  u ) ) )  =  ( ( ( y  .R  z )  +R  (
y  .R  v )
)  +R  ( ( x  .R  w )  +R  ( x  .R  u ) ) ) )
7343, 39, 19syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  z )  e.  R. )
7443, 40, 32syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  v )  e.  R. )
7538, 44, 20syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  w )  e.  R. )
7638, 45, 33syl2anc 411 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  u )  e.  R. )
7773, 74, 75, 60, 62, 76, 65caov4d 6144 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( y  .R  z
)  +R  ( y  .R  v ) )  +R  ( ( x  .R  w )  +R  ( x  .R  u
) ) )  =  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  +R  (
( y  .R  v
)  +R  ( x  .R  u ) ) ) )
7872, 77eqtrd 2239 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  ( z  +R  v ) )  +R  ( x  .R  (
w  +R  u ) ) )  =  ( ( ( y  .R  z )  +R  (
x  .R  w )
)  +R  ( ( y  .R  v )  +R  ( x  .R  u ) ) ) )
791, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78ecovidi 6747 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    _E cep 4342   `'ccnv 4682  (class class class)co 5957   R.cnr 7430   -1Rcm1r 7433    +R cplr 7434    .R cmr 7435   CCcc 7943    + caddc 7948    x. cmul 7950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-i1p 7600  df-iplp 7601  df-imp 7602  df-enr 7859  df-nr 7860  df-plr 7861  df-mr 7862  df-m1r 7866  df-c 7951  df-add 7956  df-mul 7957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator