ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpipqqslem Unicode version

Theorem addpipqqslem 7025
Description: Lemma for addpipqqs 7026. (Contributed by Jim Kingdon, 11-Sep-2019.)
Assertion
Ref Expression
addpipqqslem  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )

Proof of Theorem addpipqqslem
StepHypRef Expression
1 mulclpi 6984 . . . 4  |-  ( ( A  e.  N.  /\  D  e.  N. )  ->  ( A  .N  D
)  e.  N. )
2 mulclpi 6984 . . . 4  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
3 addclpi 6983 . . . 4  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( B  .N  C
)  e.  N. )  ->  ( ( A  .N  D )  +N  ( B  .N  C ) )  e.  N. )
41, 2, 3syl2an 284 . . 3  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  D )  +N  ( B  .N  C
) )  e.  N. )
54an42s 557 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( A  .N  D )  +N  ( B  .N  C
) )  e.  N. )
6 mulclpi 6984 . . 3  |-  ( ( B  e.  N.  /\  D  e.  N. )  ->  ( B  .N  D
)  e.  N. )
76ad2ant2l 493 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( B  .N  D )  e.  N. )
8 opelxpi 4499 . 2  |-  ( ( ( ( A  .N  D )  +N  ( B  .N  C ) )  e.  N.  /\  ( B  .N  D )  e. 
N. )  ->  <. (
( A  .N  D
)  +N  ( B  .N  C ) ) ,  ( B  .N  D ) >.  e.  ( N.  X.  N. )
)
95, 7, 8syl2anc 404 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1445   <.cop 3469    X. cxp 4465  (class class class)co 5690   N.cnpi 6928    +N cpli 6929    .N cmi 6930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-ni 6960  df-pli 6961  df-mi 6962
This theorem is referenced by:  addpipqqs  7026
  Copyright terms: Public domain W3C validator