ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpipqqslem Unicode version

Theorem addpipqqslem 7335
Description: Lemma for addpipqqs 7336. (Contributed by Jim Kingdon, 11-Sep-2019.)
Assertion
Ref Expression
addpipqqslem  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )

Proof of Theorem addpipqqslem
StepHypRef Expression
1 mulclpi 7294 . . . 4  |-  ( ( A  e.  N.  /\  D  e.  N. )  ->  ( A  .N  D
)  e.  N. )
2 mulclpi 7294 . . . 4  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
3 addclpi 7293 . . . 4  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( B  .N  C
)  e.  N. )  ->  ( ( A  .N  D )  +N  ( B  .N  C ) )  e.  N. )
41, 2, 3syl2an 287 . . 3  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  D )  +N  ( B  .N  C
) )  e.  N. )
54an42s 585 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( A  .N  D )  +N  ( B  .N  C
) )  e.  N. )
6 mulclpi 7294 . . 3  |-  ( ( B  e.  N.  /\  D  e.  N. )  ->  ( B  .N  D
)  e.  N. )
76ad2ant2l 506 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( B  .N  D )  e.  N. )
8 opelxpi 4644 . 2  |-  ( ( ( ( A  .N  D )  +N  ( B  .N  C ) )  e.  N.  /\  ( B  .N  D )  e. 
N. )  ->  <. (
( A  .N  D
)  +N  ( B  .N  C ) ) ,  ( B  .N  D ) >.  e.  ( N.  X.  N. )
)
95, 7, 8syl2anc 409 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( A  .N  D )  +N  ( B  .N  C ) ) ,  ( B  .N  D
) >.  e.  ( N. 
X.  N. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2142   <.cop 3587    X. cxp 4610  (class class class)co 5857   N.cnpi 7238    +N cpli 7239    .N cmi 7240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-irdg 6353  df-oadd 6403  df-omul 6404  df-ni 7270  df-pli 7271  df-mi 7272
This theorem is referenced by:  addpipqqs  7336
  Copyright terms: Public domain W3C validator