ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc Unicode version

Theorem enqdc 7548
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 7515 . . . 4  |-  ( ( A  e.  N.  /\  D  e.  N. )  ->  ( A  .N  D
)  e.  N. )
2 mulclpi 7515 . . . 4  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
3 pinn 7496 . . . . 5  |-  ( ( A  .N  D )  e.  N.  ->  ( A  .N  D )  e. 
om )
4 pinn 7496 . . . . 5  |-  ( ( B  .N  C )  e.  N.  ->  ( B  .N  C )  e. 
om )
5 nndceq 6645 . . . . 5  |-  ( ( ( A  .N  D
)  e.  om  /\  ( B  .N  C
)  e.  om )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
63, 4, 5syl2an 289 . . . 4  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( B  .N  C
)  e.  N. )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
71, 2, 6syl2an 289 . . 3  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( B  e.  N.  /\  C  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
87an42s 591 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
9 enqbreq 7543 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  ~Q  <. C ,  D >.  <->  ( A  .N  D )  =  ( B  .N  C ) ) )
109dcbid 843 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  (DECID  <. A ,  B >.  ~Q  <. C ,  D >. 
<-> DECID  ( A  .N  D )  =  ( B  .N  C ) ) )
118, 10mpbird 167 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4083   omcom 4682  (class class class)co 6001   N.cnpi 7459    .N cmi 7461    ~Q ceq 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567  df-ni 7491  df-mi 7493  df-enq 7534
This theorem is referenced by:  enqdc1  7549
  Copyright terms: Public domain W3C validator