ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq0 Unicode version

Theorem addclnq0 7463
Description: Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
addclnq0  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A +Q0  B )  e. Q0 )

Proof of Theorem addclnq0
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7437 . . 3  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2 oveq1 5895 . . . 4  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A +Q0  [ <. z ,  w >. ] ~Q0  ) )
32eleq1d 2256 . . 3  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( ( [ <. x ,  y
>. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A +Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
4 oveq2 5896 . . . 4  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( A +Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A +Q0  B ) )
54eleq1d 2256 . . 3  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( ( A +Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A +Q0  B )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
6 addnnnq0 7461 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. ( ( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  )
7 pinn 7321 . . . . . . . . 9  |-  ( w  e.  N.  ->  w  e.  om )
8 nnmcl 6495 . . . . . . . . 9  |-  ( ( x  e.  om  /\  w  e.  om )  ->  ( x  .o  w
)  e.  om )
97, 8sylan2 286 . . . . . . . 8  |-  ( ( x  e.  om  /\  w  e.  N. )  ->  ( x  .o  w
)  e.  om )
10 pinn 7321 . . . . . . . . 9  |-  ( y  e.  N.  ->  y  e.  om )
11 nnmcl 6495 . . . . . . . . 9  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
1210, 11sylan 283 . . . . . . . 8  |-  ( ( y  e.  N.  /\  z  e.  om )  ->  ( y  .o  z
)  e.  om )
13 nnacl 6494 . . . . . . . 8  |-  ( ( ( x  .o  w
)  e.  om  /\  ( y  .o  z
)  e.  om )  ->  ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  om )
149, 12, 13syl2an 289 . . . . . . 7  |-  ( ( ( x  e.  om  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  om )
)  ->  ( (
x  .o  w )  +o  ( y  .o  z ) )  e. 
om )
1514an42s 589 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  w )  +o  ( y  .o  z ) )  e. 
om )
16 mulpiord 7329 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
17 mulclpi 7340 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
1816, 17eqeltrrd 2265 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
1918ad2ant2l 508 . . . . . 6  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( y  .o  w )  e.  N. )
2015, 19jca 306 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
( x  .o  w
)  +o  ( y  .o  z ) )  e.  om  /\  (
y  .o  w )  e.  N. ) )
21 opelxpi 4670 . . . . 5  |-  ( ( ( ( x  .o  w )  +o  (
y  .o  z ) )  e.  om  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( om  X.  N. ) )
22 enq0ex 7451 . . . . . 6  |- ~Q0  e.  _V
2322ecelqsi 6602 . . . . 5  |-  ( <.
( ( x  .o  w )  +o  (
y  .o  z ) ) ,  ( y  .o  w ) >.  e.  ( om  X.  N. )  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
2420, 21, 233syl 17 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
( x  .o  w
)  +o  ( y  .o  z ) ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
256, 24eqeltrd 2264 . . 3  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 +Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) )
261, 3, 5, 252ecoptocl 6636 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A +Q0  B )  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
2726, 1eleqtrrdi 2281 1  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A +Q0  B )  e. Q0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   <.cop 3607   omcom 4601    X. cxp 4636  (class class class)co 5888    +o coa 6427    .o comu 6428   [cec 6546   /.cqs 6547   N.cnpi 7284    .N cmi 7286   ~Q0 ceq0 7298  Q0cnq0 7299   +Q0 cplq0 7301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-mi 7318  df-enq0 7436  df-nq0 7437  df-plq0 7439
This theorem is referenced by:  distnq0r  7475  prarloclemcalc  7514
  Copyright terms: Public domain W3C validator