| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addclnq0 | Unicode version | ||
| Description: Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| addclnq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq0 7545 |
. . 3
| |
| 2 | oveq1 5958 |
. . . 4
| |
| 3 | 2 | eleq1d 2275 |
. . 3
|
| 4 | oveq2 5959 |
. . . 4
| |
| 5 | 4 | eleq1d 2275 |
. . 3
|
| 6 | addnnnq0 7569 |
. . . 4
| |
| 7 | pinn 7429 |
. . . . . . . . 9
| |
| 8 | nnmcl 6574 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan2 286 |
. . . . . . . 8
|
| 10 | pinn 7429 |
. . . . . . . . 9
| |
| 11 | nnmcl 6574 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sylan 283 |
. . . . . . . 8
|
| 13 | nnacl 6573 |
. . . . . . . 8
| |
| 14 | 9, 12, 13 | syl2an 289 |
. . . . . . 7
|
| 15 | 14 | an42s 589 |
. . . . . 6
|
| 16 | mulpiord 7437 |
. . . . . . . 8
| |
| 17 | mulclpi 7448 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqeltrrd 2284 |
. . . . . . 7
|
| 19 | 18 | ad2ant2l 508 |
. . . . . 6
|
| 20 | 15, 19 | jca 306 |
. . . . 5
|
| 21 | opelxpi 4711 |
. . . . 5
| |
| 22 | enq0ex 7559 |
. . . . . 6
| |
| 23 | 22 | ecelqsi 6683 |
. . . . 5
|
| 24 | 20, 21, 23 | 3syl 17 |
. . . 4
|
| 25 | 6, 24 | eqeltrd 2283 |
. . 3
|
| 26 | 1, 3, 5, 25 | 2ecoptocl 6717 |
. 2
|
| 27 | 26, 1 | eleqtrrdi 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-mi 7426 df-enq0 7544 df-nq0 7545 df-plq0 7547 |
| This theorem is referenced by: distnq0r 7583 prarloclemcalc 7622 |
| Copyright terms: Public domain | W3C validator |