| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addclnq0 | Unicode version | ||
| Description: Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| addclnq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nq0 7620 |
. . 3
| |
| 2 | oveq1 6014 |
. . . 4
| |
| 3 | 2 | eleq1d 2298 |
. . 3
|
| 4 | oveq2 6015 |
. . . 4
| |
| 5 | 4 | eleq1d 2298 |
. . 3
|
| 6 | addnnnq0 7644 |
. . . 4
| |
| 7 | pinn 7504 |
. . . . . . . . 9
| |
| 8 | nnmcl 6635 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan2 286 |
. . . . . . . 8
|
| 10 | pinn 7504 |
. . . . . . . . 9
| |
| 11 | nnmcl 6635 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sylan 283 |
. . . . . . . 8
|
| 13 | nnacl 6634 |
. . . . . . . 8
| |
| 14 | 9, 12, 13 | syl2an 289 |
. . . . . . 7
|
| 15 | 14 | an42s 591 |
. . . . . 6
|
| 16 | mulpiord 7512 |
. . . . . . . 8
| |
| 17 | mulclpi 7523 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqeltrrd 2307 |
. . . . . . 7
|
| 19 | 18 | ad2ant2l 508 |
. . . . . 6
|
| 20 | 15, 19 | jca 306 |
. . . . 5
|
| 21 | opelxpi 4751 |
. . . . 5
| |
| 22 | enq0ex 7634 |
. . . . . 6
| |
| 23 | 22 | ecelqsi 6744 |
. . . . 5
|
| 24 | 20, 21, 23 | 3syl 17 |
. . . 4
|
| 25 | 6, 24 | eqeltrd 2306 |
. . 3
|
| 26 | 1, 3, 5, 25 | 2ecoptocl 6778 |
. 2
|
| 27 | 26, 1 | eleqtrrdi 2323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-enq0 7619 df-nq0 7620 df-plq0 7622 |
| This theorem is referenced by: distnq0r 7658 prarloclemcalc 7697 |
| Copyright terms: Public domain | W3C validator |