ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq Unicode version

Theorem recexnq 7474
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
Distinct variable group:    y, A

Proof of Theorem recexnq
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7432 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 5932 . . . . 5  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( [ <. x ,  z >. ]  ~Q  .Q  y )  =  ( A  .Q  y ) )
32eqeq1d 2205 . . . 4  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
43anbi2d 464 . . 3  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( ( y  e. 
Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q )  <->  ( y  e.  Q.  /\  ( A  .Q  y )  =  1Q ) ) )
54exbidv 1839 . 2  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( E. y ( y  e.  Q.  /\  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  1Q )  <->  E. y ( y  e. 
Q.  /\  ( A  .Q  y )  =  1Q ) ) )
6 opelxpi 4696 . . . . . 6  |-  ( ( z  e.  N.  /\  x  e.  N. )  -> 
<. z ,  x >.  e.  ( N.  X.  N. ) )
76ancoms 268 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  -> 
<. z ,  x >.  e.  ( N.  X.  N. ) )
8 enqex 7444 . . . . . 6  |-  ~Q  e.  _V
98ecelqsi 6657 . . . . 5  |-  ( <.
z ,  x >.  e.  ( N.  X.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
107, 9syl 14 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
1110, 1eleqtrrdi 2290 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  Q. )
12 mulcompig 7415 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  =  ( z  .N  x ) )
1312opeq2d 3816 . . . . . 6  |-  ( ( x  e.  N.  /\  z  e.  N. )  -> 
<. ( x  .N  z
) ,  ( x  .N  z ) >.  =  <. ( x  .N  z ) ,  ( z  .N  x )
>. )
1413eceq1d 6637 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. ( x  .N  z ) ,  ( x  .N  z )
>. ]  ~Q  =  [ <. ( x  .N  z
) ,  ( z  .N  x ) >. ]  ~Q  )
15 mulclpi 7412 . . . . . 6  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
16 1qec 7472 . . . . . 6  |-  ( ( x  .N  z )  e.  N.  ->  1Q  =  [ <. ( x  .N  z ) ,  ( x  .N  z )
>. ]  ~Q  )
1715, 16syl 14 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  1Q  =  [ <. ( x  .N  z ) ,  ( x  .N  z ) >. ]  ~Q  )
18 mulpipqqs 7457 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( z  e.  N.  /\  x  e.  N. )
)  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( z  .N  x ) >. ]  ~Q  )
1918an42s 589 . . . . . 6  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( x  e.  N.  /\  z  e.  N. )
)  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( z  .N  x ) >. ]  ~Q  )
2019anidms 397 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. ( x  .N  z ) ,  ( z  .N  x )
>. ]  ~Q  )
2114, 17, 203eqtr4rd 2240 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )
2211, 21jca 306 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q ) )
23 eleq1 2259 . . . . 5  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( y  e.  Q.  <->  [ <. z ,  x >. ]  ~Q  e.  Q. ) )
24 oveq2 5933 . . . . . 6  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  ( [
<. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  ) )
2524eqeq1d 2205 . . . . 5  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q  <->  ( [ <. x ,  z
>. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q ) )
2623, 25anbi12d 473 . . . 4  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( ( y  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q )  <->  ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [
<. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )
) )
2726spcegv 2852 . . 3  |-  ( [
<. z ,  x >. ]  ~Q  e.  Q.  ->  ( ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )  ->  E. y
( y  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q ) ) )
2811, 22, 27sylc 62 . 2  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  E. y ( y  e.  Q.  /\  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  1Q ) )
291, 5, 28ecoptocl 6690 1  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3626    X. cxp 4662  (class class class)co 5925   [cec 6599   /.cqs 6600   N.cnpi 7356    .N cmi 7358    ~Q ceq 7363   Q.cnq 7364   1Qc1q 7365    .Q cmq 7367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-mi 7390  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-mqqs 7434  df-1nqqs 7435
This theorem is referenced by:  recmulnqg  7475  recclnq  7476
  Copyright terms: Public domain W3C validator