ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq Unicode version

Theorem ltdcnq 7229
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )

Proof of Theorem ltdcnq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7210 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nqpi 7210 . . . 4  |-  ( B  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )
31, 2anim12i 336 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
4 ee4anv 1907 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
53, 4sylibr 133 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
6 mulclpi 7160 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
7 mulclpi 7160 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
8 ltdcpi 7155 . . . . . . . . 9  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  -> DECID  ( x  .N  w ) 
<N  ( y  .N  z
) )
96, 7, 8syl2an 287 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
109an42s 579 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
11 ordpipqqs 7206 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
1211dcbid 824 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  (DECID  [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <-> DECID  ( x  .N  w
)  <N  ( y  .N  z ) ) )
1310, 12mpbird 166 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
1413ad2ant2r 501 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
15 breq12 3942 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1615ad2ant2l 500 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1716dcbid 824 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  (DECID  A  <Q  B  <-> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1814, 17mpbird 166 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
1918exlimivv 1869 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
2019exlimivv 1869 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
215, 20syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 1481   <.cop 3535   class class class wbr 3937  (class class class)co 5782   [cec 6435   N.cnpi 7104    .N cmi 7106    <N clti 7107    ~Q ceq 7111   Q.cnq 7112    <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-enq 7179  df-nqqs 7180  df-ltnqqs 7185
This theorem is referenced by:  distrlem4prl  7416  distrlem4pru  7417
  Copyright terms: Public domain W3C validator