ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq Unicode version

Theorem ltdcnq 7198
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )

Proof of Theorem ltdcnq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7179 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nqpi 7179 . . . 4  |-  ( B  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )
31, 2anim12i 336 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
4 ee4anv 1904 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
53, 4sylibr 133 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
6 mulclpi 7129 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
7 mulclpi 7129 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
8 ltdcpi 7124 . . . . . . . . 9  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  -> DECID  ( x  .N  w ) 
<N  ( y  .N  z
) )
96, 7, 8syl2an 287 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
109an42s 578 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
11 ordpipqqs 7175 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
1211dcbid 823 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  (DECID  [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <-> DECID  ( x  .N  w
)  <N  ( y  .N  z ) ) )
1310, 12mpbird 166 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
1413ad2ant2r 500 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
15 breq12 3929 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1615ad2ant2l 499 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1716dcbid 823 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  (DECID  A  <Q  B  <-> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1814, 17mpbird 166 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
1918exlimivv 1868 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
2019exlimivv 1868 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
215, 20syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331   E.wex 1468    e. wcel 1480   <.cop 3525   class class class wbr 3924  (class class class)co 5767   [cec 6420   N.cnpi 7073    .N cmi 7075    <N clti 7076    ~Q ceq 7080   Q.cnq 7081    <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-enq 7148  df-nqqs 7149  df-ltnqqs 7154
This theorem is referenced by:  distrlem4prl  7385  distrlem4pru  7386
  Copyright terms: Public domain W3C validator