ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq Unicode version

Theorem ltdcnq 7426
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )

Proof of Theorem ltdcnq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7407 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nqpi 7407 . . . 4  |-  ( B  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
4 ee4anv 1946 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
6 mulclpi 7357 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
7 mulclpi 7357 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
8 ltdcpi 7352 . . . . . . . . 9  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  -> DECID  ( x  .N  w ) 
<N  ( y  .N  z
) )
96, 7, 8syl2an 289 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
109an42s 589 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
11 ordpipqqs 7403 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
1211dcbid 839 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  (DECID  [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <-> DECID  ( x  .N  w
)  <N  ( y  .N  z ) ) )
1310, 12mpbird 167 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
1413ad2ant2r 509 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
15 breq12 4023 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1615ad2ant2l 508 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1716dcbid 839 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  (DECID  A  <Q  B  <-> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1814, 17mpbird 167 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
1918exlimivv 1908 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
2019exlimivv 1908 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
215, 20syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2160   <.cop 3610   class class class wbr 4018  (class class class)co 5896   [cec 6557   N.cnpi 7301    .N cmi 7303    <N clti 7304    ~Q ceq 7308   Q.cnq 7309    <Q cltq 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-mi 7335  df-lti 7336  df-enq 7376  df-nqqs 7377  df-ltnqqs 7382
This theorem is referenced by:  distrlem4prl  7613  distrlem4pru  7614
  Copyright terms: Public domain W3C validator