ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdcnq Unicode version

Theorem ltdcnq 7580
Description: Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
ltdcnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )

Proof of Theorem ltdcnq
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7561 . . . 4  |-  ( A  e.  Q.  ->  E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  ) )
2 nqpi 7561 . . . 4  |-  ( B  e.  Q.  ->  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )
31, 2anim12i 338 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
4 ee4anv 1985 . . 3  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( E. x E. y ( ( x  e.  N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  E. z E. w ( ( z  e.  N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
53, 4sylibr 134 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) ) )
6 mulclpi 7511 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
7 mulclpi 7511 . . . . . . . . 9  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
8 ltdcpi 7506 . . . . . . . . 9  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N. )  -> DECID  ( x  .N  w ) 
<N  ( y  .N  z
) )
96, 7, 8syl2an 289 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
109an42s 591 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  ( x  .N  w
)  <N  ( y  .N  z ) )
11 ordpipqqs 7557 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
1211dcbid 843 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  (DECID  [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <-> DECID  ( x  .N  w
)  <N  ( y  .N  z ) ) )
1310, 12mpbird 167 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
1413ad2ant2r 509 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )
15 breq12 4087 . . . . . . 7  |-  ( ( A  =  [ <. x ,  y >. ]  ~Q  /\  B  =  [ <. z ,  w >. ]  ~Q  )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1615ad2ant2l 508 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  ( A  <Q  B  <->  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1716dcbid 843 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  ->  (DECID  A  <Q  B  <-> DECID  [ <. x ,  y
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
1814, 17mpbird 167 . . . 4  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
1918exlimivv 1943 . . 3  |-  ( E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
2019exlimivv 1943 . 2  |-  ( E. x E. y E. z E. w ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  A  =  [ <. x ,  y
>. ]  ~Q  )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  B  =  [ <. z ,  w >. ]  ~Q  ) )  -> DECID 
A  <Q  B )
215, 20syl 14 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> DECID  A 
<Q  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   class class class wbr 4082  (class class class)co 6000   [cec 6676   N.cnpi 7455    .N cmi 7457    <N clti 7458    ~Q ceq 7462   Q.cnq 7463    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-enq 7530  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  distrlem4prl  7767  distrlem4pru  7768
  Copyright terms: Public domain W3C validator