| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoveq | Unicode version | ||
| Description: This is the first of
several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation |
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| Ref | Expression |
|---|---|
| ecopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5976 |
. . . 4
| |
| 2 | oveq12 5976 |
. . . 4
| |
| 3 | 1, 2 | eqeqan12d 2223 |
. . 3
|
| 4 | 3 | an42s 589 |
. 2
|
| 5 | ecopopr.1 |
. 2
| |
| 6 | 4, 5 | opbrop 4772 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ecopovsym 6741 ecopovtrn 6742 ecopover 6743 ecopovsymg 6744 ecopovtrng 6745 ecopoverg 6746 enqbreq 7504 enrbreq 7882 prsrlem1 7890 |
| Copyright terms: Public domain | W3C validator |