ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoveq Unicode version

Theorem ecopoveq 6698
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
Hypothesis
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
Assertion
Ref Expression
ecopoveq  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u,  .+    x, S, y, z, w, v, u    x, A, y, z, w, v, u    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y,
z, w, v, u)

Proof of Theorem ecopoveq
StepHypRef Expression
1 oveq12 5934 . . . 4  |-  ( ( z  =  A  /\  u  =  D )  ->  ( z  .+  u
)  =  ( A 
.+  D ) )
2 oveq12 5934 . . . 4  |-  ( ( w  =  B  /\  v  =  C )  ->  ( w  .+  v
)  =  ( B 
.+  C ) )
31, 2eqeqan12d 2212 . . 3  |-  ( ( ( z  =  A  /\  u  =  D )  /\  ( w  =  B  /\  v  =  C ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
43an42s 589 . 2  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
5 ecopopr.1 . 2  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
64, 5opbrop 4743 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3626   class class class wbr 4034   {copab 4094    X. cxp 4662  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  ecopovsym  6699  ecopovtrn  6700  ecopover  6701  ecopovsymg  6702  ecopovtrng  6703  ecopoverg  6704  enqbreq  7440  enrbreq  7818  prsrlem1  7826
  Copyright terms: Public domain W3C validator