ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoveq Unicode version

Theorem ecopoveq 6719
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
Hypothesis
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
Assertion
Ref Expression
ecopoveq  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u,  .+    x, S, y, z, w, v, u    x, A, y, z, w, v, u    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y,
z, w, v, u)

Proof of Theorem ecopoveq
StepHypRef Expression
1 oveq12 5955 . . . 4  |-  ( ( z  =  A  /\  u  =  D )  ->  ( z  .+  u
)  =  ( A 
.+  D ) )
2 oveq12 5955 . . . 4  |-  ( ( w  =  B  /\  v  =  C )  ->  ( w  .+  v
)  =  ( B 
.+  C ) )
31, 2eqeqan12d 2221 . . 3  |-  ( ( ( z  =  A  /\  u  =  D )  /\  ( w  =  B  /\  v  =  C ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
43an42s 589 . 2  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
5 ecopopr.1 . 2  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
64, 5opbrop 4755 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   <.cop 3636   class class class wbr 4045   {copab 4105    X. cxp 4674  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  ecopovsym  6720  ecopovtrn  6721  ecopover  6722  ecopovsymg  6723  ecopovtrng  6724  ecopoverg  6725  enqbreq  7471  enrbreq  7849  prsrlem1  7857
  Copyright terms: Public domain W3C validator