Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopoveq | Unicode version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation . (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 |
Ref | Expression |
---|---|
ecopoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5874 | . . . 4 | |
2 | oveq12 5874 | . . . 4 | |
3 | 1, 2 | eqeqan12d 2191 | . . 3 |
4 | 3 | an42s 589 | . 2 |
5 | ecopopr.1 | . 2 | |
6 | 4, 5 | opbrop 4699 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 cop 3592 class class class wbr 3998 copab 4058 cxp 4618 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: ecopovsym 6621 ecopovtrn 6622 ecopover 6623 ecopovsymg 6624 ecopovtrng 6625 ecopoverg 6626 enqbreq 7330 enrbreq 7708 prsrlem1 7716 |
Copyright terms: Public domain | W3C validator |