| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoveq | Unicode version | ||
| Description: This is the first of
several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation |
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| Ref | Expression |
|---|---|
| ecopoveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 5955 |
. . . 4
| |
| 2 | oveq12 5955 |
. . . 4
| |
| 3 | 1, 2 | eqeqan12d 2221 |
. . 3
|
| 4 | 3 | an42s 589 |
. 2
|
| 5 | ecopopr.1 |
. 2
| |
| 6 | 4, 5 | opbrop 4755 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: ecopovsym 6720 ecopovtrn 6721 ecopover 6722 ecopovsymg 6723 ecopovtrng 6724 ecopoverg 6725 enqbreq 7471 enrbreq 7849 prsrlem1 7857 |
| Copyright terms: Public domain | W3C validator |