ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoveq Unicode version

Theorem ecopoveq 6686
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
Hypothesis
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
Assertion
Ref Expression
ecopoveq  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u,  .+    x, S, y, z, w, v, u    x, A, y, z, w, v, u    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y,
z, w, v, u)

Proof of Theorem ecopoveq
StepHypRef Expression
1 oveq12 5928 . . . 4  |-  ( ( z  =  A  /\  u  =  D )  ->  ( z  .+  u
)  =  ( A 
.+  D ) )
2 oveq12 5928 . . . 4  |-  ( ( w  =  B  /\  v  =  C )  ->  ( w  .+  v
)  =  ( B 
.+  C ) )
31, 2eqeqan12d 2209 . . 3  |-  ( ( ( z  =  A  /\  u  =  D )  /\  ( w  =  B  /\  v  =  C ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
43an42s 589 . 2  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
5 ecopopr.1 . 2  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
64, 5opbrop 4739 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   <.cop 3622   class class class wbr 4030   {copab 4090    X. cxp 4658  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  ecopovsym  6687  ecopovtrn  6688  ecopover  6689  ecopovsymg  6690  ecopovtrng  6691  ecopoverg  6692  enqbreq  7418  enrbreq  7796  prsrlem1  7804
  Copyright terms: Public domain W3C validator