Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopoveq | Unicode version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation . (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 |
Ref | Expression |
---|---|
ecopoveq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5851 | . . . 4 | |
2 | oveq12 5851 | . . . 4 | |
3 | 1, 2 | eqeqan12d 2181 | . . 3 |
4 | 3 | an42s 579 | . 2 |
5 | ecopopr.1 | . 2 | |
6 | 4, 5 | opbrop 4683 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: ecopovsym 6597 ecopovtrn 6598 ecopover 6599 ecopovsymg 6600 ecopovtrng 6601 ecopoverg 6602 enqbreq 7297 enrbreq 7675 prsrlem1 7683 |
Copyright terms: Public domain | W3C validator |