| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcmpblnq | Unicode version | ||
| Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addcmpblnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrpig 7488 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | simprlr 538 |
. . . . . . . 8
| |
| 5 | mulclpi 7483 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . . 7
|
| 7 | simpllr 534 |
. . . . . . . 8
| |
| 8 | simprll 537 |
. . . . . . . 8
| |
| 9 | mulclpi 7483 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | mulclpi 7483 |
. . . . . . . . 9
| |
| 12 | 11 | ad2ant2l 508 |
. . . . . . . 8
|
| 13 | 12 | ad2ant2l 508 |
. . . . . . 7
|
| 14 | addclpi 7482 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulcompig 7486 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | 2, 6, 10, 13, 15, 17 | caovdir2d 6153 |
. . . . . 6
|
| 19 | simplrr 536 |
. . . . . . . 8
| |
| 20 | mulasspig 7487 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | simprrr 540 |
. . . . . . . 8
| |
| 23 | mulclpi 7483 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 3, 4, 19, 17, 21, 22, 24 | caov4d 6161 |
. . . . . . 7
|
| 26 | 7, 8, 19, 17, 21, 22, 24 | caov4d 6161 |
. . . . . . 7
|
| 27 | 25, 26 | oveq12d 5992 |
. . . . . 6
|
| 28 | 18, 27 | eqtrd 2242 |
. . . . 5
|
| 29 | oveq1 5981 |
. . . . . 6
| |
| 30 | oveq2 5982 |
. . . . . 6
| |
| 31 | 29, 30 | oveqan12d 5993 |
. . . . 5
|
| 32 | 28, 31 | sylan9eq 2262 |
. . . 4
|
| 33 | mulclpi 7483 |
. . . . . . . 8
| |
| 34 | 7, 4, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | simplrl 535 |
. . . . . . . 8
| |
| 36 | mulclpi 7483 |
. . . . . . . 8
| |
| 37 | 35, 22, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | simprrl 539 |
. . . . . . . 8
| |
| 39 | mulclpi 7483 |
. . . . . . . 8
| |
| 40 | 19, 38, 39 | syl2anc 411 |
. . . . . . 7
|
| 41 | distrpig 7488 |
. . . . . . 7
| |
| 42 | 34, 37, 40, 41 | syl3anc 1252 |
. . . . . 6
|
| 43 | 7, 4, 35, 17, 21, 22, 24 | caov4d 6161 |
. . . . . . 7
|
| 44 | 7, 4, 19, 17, 21, 38, 24 | caov4d 6161 |
. . . . . . 7
|
| 45 | 43, 44 | oveq12d 5992 |
. . . . . 6
|
| 46 | 42, 45 | eqtrd 2242 |
. . . . 5
|
| 47 | 46 | adantr 276 |
. . . 4
|
| 48 | 32, 47 | eqtr4d 2245 |
. . 3
|
| 49 | addclpi 7482 |
. . . . . . . . . 10
| |
| 50 | 5, 9, 49 | syl2an 289 |
. . . . . . . . 9
|
| 51 | 50 | an42s 591 |
. . . . . . . 8
|
| 52 | 33 | ad2ant2l 508 |
. . . . . . . 8
|
| 53 | 51, 52 | jca 306 |
. . . . . . 7
|
| 54 | addclpi 7482 |
. . . . . . . . . 10
| |
| 55 | 36, 39, 54 | syl2an 289 |
. . . . . . . . 9
|
| 56 | 55 | an42s 591 |
. . . . . . . 8
|
| 57 | 56, 12 | jca 306 |
. . . . . . 7
|
| 58 | 53, 57 | anim12i 338 |
. . . . . 6
|
| 59 | 58 | an4s 590 |
. . . . 5
|
| 60 | enqbreq 7511 |
. . . . 5
| |
| 61 | 59, 60 | syl 14 |
. . . 4
|
| 62 | 61 | adantr 276 |
. . 3
|
| 63 | 48, 62 | mpbird 167 |
. 2
|
| 64 | 63 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-ni 7459 df-pli 7460 df-mi 7461 df-enq 7502 |
| This theorem is referenced by: addpipqqs 7525 |
| Copyright terms: Public domain | W3C validator |