Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcmpblnq | Unicode version |
Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
addcmpblnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distrpig 7274 | . . . . . . . 8 | |
2 | 1 | adantl 275 | . . . . . . 7 |
3 | simplll 523 | . . . . . . . 8 | |
4 | simprlr 528 | . . . . . . . 8 | |
5 | mulclpi 7269 | . . . . . . . 8 | |
6 | 3, 4, 5 | syl2anc 409 | . . . . . . 7 |
7 | simpllr 524 | . . . . . . . 8 | |
8 | simprll 527 | . . . . . . . 8 | |
9 | mulclpi 7269 | . . . . . . . 8 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . . 7 |
11 | mulclpi 7269 | . . . . . . . . 9 | |
12 | 11 | ad2ant2l 500 | . . . . . . . 8 |
13 | 12 | ad2ant2l 500 | . . . . . . 7 |
14 | addclpi 7268 | . . . . . . . 8 | |
15 | 14 | adantl 275 | . . . . . . 7 |
16 | mulcompig 7272 | . . . . . . . 8 | |
17 | 16 | adantl 275 | . . . . . . 7 |
18 | 2, 6, 10, 13, 15, 17 | caovdir2d 6018 | . . . . . 6 |
19 | simplrr 526 | . . . . . . . 8 | |
20 | mulasspig 7273 | . . . . . . . . 9 | |
21 | 20 | adantl 275 | . . . . . . . 8 |
22 | simprrr 530 | . . . . . . . 8 | |
23 | mulclpi 7269 | . . . . . . . . 9 | |
24 | 23 | adantl 275 | . . . . . . . 8 |
25 | 3, 4, 19, 17, 21, 22, 24 | caov4d 6026 | . . . . . . 7 |
26 | 7, 8, 19, 17, 21, 22, 24 | caov4d 6026 | . . . . . . 7 |
27 | 25, 26 | oveq12d 5860 | . . . . . 6 |
28 | 18, 27 | eqtrd 2198 | . . . . 5 |
29 | oveq1 5849 | . . . . . 6 | |
30 | oveq2 5850 | . . . . . 6 | |
31 | 29, 30 | oveqan12d 5861 | . . . . 5 |
32 | 28, 31 | sylan9eq 2219 | . . . 4 |
33 | mulclpi 7269 | . . . . . . . 8 | |
34 | 7, 4, 33 | syl2anc 409 | . . . . . . 7 |
35 | simplrl 525 | . . . . . . . 8 | |
36 | mulclpi 7269 | . . . . . . . 8 | |
37 | 35, 22, 36 | syl2anc 409 | . . . . . . 7 |
38 | simprrl 529 | . . . . . . . 8 | |
39 | mulclpi 7269 | . . . . . . . 8 | |
40 | 19, 38, 39 | syl2anc 409 | . . . . . . 7 |
41 | distrpig 7274 | . . . . . . 7 | |
42 | 34, 37, 40, 41 | syl3anc 1228 | . . . . . 6 |
43 | 7, 4, 35, 17, 21, 22, 24 | caov4d 6026 | . . . . . . 7 |
44 | 7, 4, 19, 17, 21, 38, 24 | caov4d 6026 | . . . . . . 7 |
45 | 43, 44 | oveq12d 5860 | . . . . . 6 |
46 | 42, 45 | eqtrd 2198 | . . . . 5 |
47 | 46 | adantr 274 | . . . 4 |
48 | 32, 47 | eqtr4d 2201 | . . 3 |
49 | addclpi 7268 | . . . . . . . . . 10 | |
50 | 5, 9, 49 | syl2an 287 | . . . . . . . . 9 |
51 | 50 | an42s 579 | . . . . . . . 8 |
52 | 33 | ad2ant2l 500 | . . . . . . . 8 |
53 | 51, 52 | jca 304 | . . . . . . 7 |
54 | addclpi 7268 | . . . . . . . . . 10 | |
55 | 36, 39, 54 | syl2an 287 | . . . . . . . . 9 |
56 | 55 | an42s 579 | . . . . . . . 8 |
57 | 56, 12 | jca 304 | . . . . . . 7 |
58 | 53, 57 | anim12i 336 | . . . . . 6 |
59 | 58 | an4s 578 | . . . . 5 |
60 | enqbreq 7297 | . . . . 5 | |
61 | 59, 60 | syl 14 | . . . 4 |
62 | 61 | adantr 274 | . . 3 |
63 | 48, 62 | mpbird 166 | . 2 |
64 | 63 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 (class class class)co 5842 cnpi 7213 cpli 7214 cmi 7215 ceq 7220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-pli 7246 df-mi 7247 df-enq 7288 |
This theorem is referenced by: addpipqqs 7311 |
Copyright terms: Public domain | W3C validator |