| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcmpblnq | Unicode version | ||
| Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addcmpblnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrpig 7453 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | simprlr 538 |
. . . . . . . 8
| |
| 5 | mulclpi 7448 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . . 7
|
| 7 | simpllr 534 |
. . . . . . . 8
| |
| 8 | simprll 537 |
. . . . . . . 8
| |
| 9 | mulclpi 7448 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | mulclpi 7448 |
. . . . . . . . 9
| |
| 12 | 11 | ad2ant2l 508 |
. . . . . . . 8
|
| 13 | 12 | ad2ant2l 508 |
. . . . . . 7
|
| 14 | addclpi 7447 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulcompig 7451 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | 2, 6, 10, 13, 15, 17 | caovdir2d 6130 |
. . . . . 6
|
| 19 | simplrr 536 |
. . . . . . . 8
| |
| 20 | mulasspig 7452 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | simprrr 540 |
. . . . . . . 8
| |
| 23 | mulclpi 7448 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 3, 4, 19, 17, 21, 22, 24 | caov4d 6138 |
. . . . . . 7
|
| 26 | 7, 8, 19, 17, 21, 22, 24 | caov4d 6138 |
. . . . . . 7
|
| 27 | 25, 26 | oveq12d 5969 |
. . . . . 6
|
| 28 | 18, 27 | eqtrd 2239 |
. . . . 5
|
| 29 | oveq1 5958 |
. . . . . 6
| |
| 30 | oveq2 5959 |
. . . . . 6
| |
| 31 | 29, 30 | oveqan12d 5970 |
. . . . 5
|
| 32 | 28, 31 | sylan9eq 2259 |
. . . 4
|
| 33 | mulclpi 7448 |
. . . . . . . 8
| |
| 34 | 7, 4, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | simplrl 535 |
. . . . . . . 8
| |
| 36 | mulclpi 7448 |
. . . . . . . 8
| |
| 37 | 35, 22, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | simprrl 539 |
. . . . . . . 8
| |
| 39 | mulclpi 7448 |
. . . . . . . 8
| |
| 40 | 19, 38, 39 | syl2anc 411 |
. . . . . . 7
|
| 41 | distrpig 7453 |
. . . . . . 7
| |
| 42 | 34, 37, 40, 41 | syl3anc 1250 |
. . . . . 6
|
| 43 | 7, 4, 35, 17, 21, 22, 24 | caov4d 6138 |
. . . . . . 7
|
| 44 | 7, 4, 19, 17, 21, 38, 24 | caov4d 6138 |
. . . . . . 7
|
| 45 | 43, 44 | oveq12d 5969 |
. . . . . 6
|
| 46 | 42, 45 | eqtrd 2239 |
. . . . 5
|
| 47 | 46 | adantr 276 |
. . . 4
|
| 48 | 32, 47 | eqtr4d 2242 |
. . 3
|
| 49 | addclpi 7447 |
. . . . . . . . . 10
| |
| 50 | 5, 9, 49 | syl2an 289 |
. . . . . . . . 9
|
| 51 | 50 | an42s 589 |
. . . . . . . 8
|
| 52 | 33 | ad2ant2l 508 |
. . . . . . . 8
|
| 53 | 51, 52 | jca 306 |
. . . . . . 7
|
| 54 | addclpi 7447 |
. . . . . . . . . 10
| |
| 55 | 36, 39, 54 | syl2an 289 |
. . . . . . . . 9
|
| 56 | 55 | an42s 589 |
. . . . . . . 8
|
| 57 | 56, 12 | jca 306 |
. . . . . . 7
|
| 58 | 53, 57 | anim12i 338 |
. . . . . 6
|
| 59 | 58 | an4s 588 |
. . . . 5
|
| 60 | enqbreq 7476 |
. . . . 5
| |
| 61 | 59, 60 | syl 14 |
. . . 4
|
| 62 | 61 | adantr 276 |
. . 3
|
| 63 | 48, 62 | mpbird 167 |
. 2
|
| 64 | 63 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-ni 7424 df-pli 7425 df-mi 7426 df-enq 7467 |
| This theorem is referenced by: addpipqqs 7490 |
| Copyright terms: Public domain | W3C validator |