| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcmpblnq | Unicode version | ||
| Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addcmpblnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrpig 7400 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | simprlr 538 |
. . . . . . . 8
| |
| 5 | mulclpi 7395 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . . 7
|
| 7 | simpllr 534 |
. . . . . . . 8
| |
| 8 | simprll 537 |
. . . . . . . 8
| |
| 9 | mulclpi 7395 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | mulclpi 7395 |
. . . . . . . . 9
| |
| 12 | 11 | ad2ant2l 508 |
. . . . . . . 8
|
| 13 | 12 | ad2ant2l 508 |
. . . . . . 7
|
| 14 | addclpi 7394 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulcompig 7398 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | 2, 6, 10, 13, 15, 17 | caovdir2d 6100 |
. . . . . 6
|
| 19 | simplrr 536 |
. . . . . . . 8
| |
| 20 | mulasspig 7399 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | simprrr 540 |
. . . . . . . 8
| |
| 23 | mulclpi 7395 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 3, 4, 19, 17, 21, 22, 24 | caov4d 6108 |
. . . . . . 7
|
| 26 | 7, 8, 19, 17, 21, 22, 24 | caov4d 6108 |
. . . . . . 7
|
| 27 | 25, 26 | oveq12d 5940 |
. . . . . 6
|
| 28 | 18, 27 | eqtrd 2229 |
. . . . 5
|
| 29 | oveq1 5929 |
. . . . . 6
| |
| 30 | oveq2 5930 |
. . . . . 6
| |
| 31 | 29, 30 | oveqan12d 5941 |
. . . . 5
|
| 32 | 28, 31 | sylan9eq 2249 |
. . . 4
|
| 33 | mulclpi 7395 |
. . . . . . . 8
| |
| 34 | 7, 4, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | simplrl 535 |
. . . . . . . 8
| |
| 36 | mulclpi 7395 |
. . . . . . . 8
| |
| 37 | 35, 22, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | simprrl 539 |
. . . . . . . 8
| |
| 39 | mulclpi 7395 |
. . . . . . . 8
| |
| 40 | 19, 38, 39 | syl2anc 411 |
. . . . . . 7
|
| 41 | distrpig 7400 |
. . . . . . 7
| |
| 42 | 34, 37, 40, 41 | syl3anc 1249 |
. . . . . 6
|
| 43 | 7, 4, 35, 17, 21, 22, 24 | caov4d 6108 |
. . . . . . 7
|
| 44 | 7, 4, 19, 17, 21, 38, 24 | caov4d 6108 |
. . . . . . 7
|
| 45 | 43, 44 | oveq12d 5940 |
. . . . . 6
|
| 46 | 42, 45 | eqtrd 2229 |
. . . . 5
|
| 47 | 46 | adantr 276 |
. . . 4
|
| 48 | 32, 47 | eqtr4d 2232 |
. . 3
|
| 49 | addclpi 7394 |
. . . . . . . . . 10
| |
| 50 | 5, 9, 49 | syl2an 289 |
. . . . . . . . 9
|
| 51 | 50 | an42s 589 |
. . . . . . . 8
|
| 52 | 33 | ad2ant2l 508 |
. . . . . . . 8
|
| 53 | 51, 52 | jca 306 |
. . . . . . 7
|
| 54 | addclpi 7394 |
. . . . . . . . . 10
| |
| 55 | 36, 39, 54 | syl2an 289 |
. . . . . . . . 9
|
| 56 | 55 | an42s 589 |
. . . . . . . 8
|
| 57 | 56, 12 | jca 306 |
. . . . . . 7
|
| 58 | 53, 57 | anim12i 338 |
. . . . . 6
|
| 59 | 58 | an4s 588 |
. . . . 5
|
| 60 | enqbreq 7423 |
. . . . 5
| |
| 61 | 59, 60 | syl 14 |
. . . 4
|
| 62 | 61 | adantr 276 |
. . 3
|
| 63 | 48, 62 | mpbird 167 |
. 2
|
| 64 | 63 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-ni 7371 df-pli 7372 df-mi 7373 df-enq 7414 |
| This theorem is referenced by: addpipqqs 7437 |
| Copyright terms: Public domain | W3C validator |