| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcmpblnq | Unicode version | ||
| Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.) |
| Ref | Expression |
|---|---|
| addcmpblnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distrpig 7528 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | simplll 533 |
. . . . . . . 8
| |
| 4 | simprlr 538 |
. . . . . . . 8
| |
| 5 | mulclpi 7523 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . . 7
|
| 7 | simpllr 534 |
. . . . . . . 8
| |
| 8 | simprll 537 |
. . . . . . . 8
| |
| 9 | mulclpi 7523 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | mulclpi 7523 |
. . . . . . . . 9
| |
| 12 | 11 | ad2ant2l 508 |
. . . . . . . 8
|
| 13 | 12 | ad2ant2l 508 |
. . . . . . 7
|
| 14 | addclpi 7522 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulcompig 7526 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | 2, 6, 10, 13, 15, 17 | caovdir2d 6188 |
. . . . . 6
|
| 19 | simplrr 536 |
. . . . . . . 8
| |
| 20 | mulasspig 7527 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | simprrr 540 |
. . . . . . . 8
| |
| 23 | mulclpi 7523 |
. . . . . . . . 9
| |
| 24 | 23 | adantl 277 |
. . . . . . . 8
|
| 25 | 3, 4, 19, 17, 21, 22, 24 | caov4d 6196 |
. . . . . . 7
|
| 26 | 7, 8, 19, 17, 21, 22, 24 | caov4d 6196 |
. . . . . . 7
|
| 27 | 25, 26 | oveq12d 6025 |
. . . . . 6
|
| 28 | 18, 27 | eqtrd 2262 |
. . . . 5
|
| 29 | oveq1 6014 |
. . . . . 6
| |
| 30 | oveq2 6015 |
. . . . . 6
| |
| 31 | 29, 30 | oveqan12d 6026 |
. . . . 5
|
| 32 | 28, 31 | sylan9eq 2282 |
. . . 4
|
| 33 | mulclpi 7523 |
. . . . . . . 8
| |
| 34 | 7, 4, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | simplrl 535 |
. . . . . . . 8
| |
| 36 | mulclpi 7523 |
. . . . . . . 8
| |
| 37 | 35, 22, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | simprrl 539 |
. . . . . . . 8
| |
| 39 | mulclpi 7523 |
. . . . . . . 8
| |
| 40 | 19, 38, 39 | syl2anc 411 |
. . . . . . 7
|
| 41 | distrpig 7528 |
. . . . . . 7
| |
| 42 | 34, 37, 40, 41 | syl3anc 1271 |
. . . . . 6
|
| 43 | 7, 4, 35, 17, 21, 22, 24 | caov4d 6196 |
. . . . . . 7
|
| 44 | 7, 4, 19, 17, 21, 38, 24 | caov4d 6196 |
. . . . . . 7
|
| 45 | 43, 44 | oveq12d 6025 |
. . . . . 6
|
| 46 | 42, 45 | eqtrd 2262 |
. . . . 5
|
| 47 | 46 | adantr 276 |
. . . 4
|
| 48 | 32, 47 | eqtr4d 2265 |
. . 3
|
| 49 | addclpi 7522 |
. . . . . . . . . 10
| |
| 50 | 5, 9, 49 | syl2an 289 |
. . . . . . . . 9
|
| 51 | 50 | an42s 591 |
. . . . . . . 8
|
| 52 | 33 | ad2ant2l 508 |
. . . . . . . 8
|
| 53 | 51, 52 | jca 306 |
. . . . . . 7
|
| 54 | addclpi 7522 |
. . . . . . . . . 10
| |
| 55 | 36, 39, 54 | syl2an 289 |
. . . . . . . . 9
|
| 56 | 55 | an42s 591 |
. . . . . . . 8
|
| 57 | 56, 12 | jca 306 |
. . . . . . 7
|
| 58 | 53, 57 | anim12i 338 |
. . . . . 6
|
| 59 | 58 | an4s 590 |
. . . . 5
|
| 60 | enqbreq 7551 |
. . . . 5
| |
| 61 | 59, 60 | syl 14 |
. . . 4
|
| 62 | 61 | adantr 276 |
. . 3
|
| 63 | 48, 62 | mpbird 167 |
. 2
|
| 64 | 63 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 df-omul 6573 df-ni 7499 df-pli 7500 df-mi 7501 df-enq 7542 |
| This theorem is referenced by: addpipqqs 7565 |
| Copyright terms: Public domain | W3C validator |