Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulclsr | Unicode version |
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
mulclsr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7676 | . . 3 | |
2 | oveq1 5857 | . . . 4 | |
3 | 2 | eleq1d 2239 | . . 3 |
4 | oveq2 5858 | . . . 4 | |
5 | 4 | eleq1d 2239 | . . 3 |
6 | mulsrpr 7695 | . . . 4 | |
7 | mulclpr 7521 | . . . . . . . 8 | |
8 | mulclpr 7521 | . . . . . . . 8 | |
9 | addclpr 7486 | . . . . . . . 8 | |
10 | 7, 8, 9 | syl2an 287 | . . . . . . 7 |
11 | 10 | an4s 583 | . . . . . 6 |
12 | mulclpr 7521 | . . . . . . . 8 | |
13 | mulclpr 7521 | . . . . . . . 8 | |
14 | addclpr 7486 | . . . . . . . 8 | |
15 | 12, 13, 14 | syl2an 287 | . . . . . . 7 |
16 | 15 | an42s 584 | . . . . . 6 |
17 | 11, 16 | jca 304 | . . . . 5 |
18 | opelxpi 4641 | . . . . 5 | |
19 | enrex 7686 | . . . . . 6 | |
20 | 19 | ecelqsi 6563 | . . . . 5 |
21 | 17, 18, 20 | 3syl 17 | . . . 4 |
22 | 6, 21 | eqeltrd 2247 | . . 3 |
23 | 1, 3, 5, 22 | 2ecoptocl 6597 | . 2 |
24 | 23, 1 | eleqtrrdi 2264 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cop 3584 cxp 4607 (class class class)co 5850 cec 6507 cqs 6508 cnp 7240 cpp 7242 cmp 7243 cer 7245 cnr 7246 cmr 7251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-1o 6392 df-2o 6393 df-oadd 6396 df-omul 6397 df-er 6509 df-ec 6511 df-qs 6515 df-ni 7253 df-pli 7254 df-mi 7255 df-lti 7256 df-plpq 7293 df-mpq 7294 df-enq 7296 df-nqqs 7297 df-plqqs 7298 df-mqqs 7299 df-1nqqs 7300 df-rq 7301 df-ltnqqs 7302 df-enq0 7373 df-nq0 7374 df-0nq0 7375 df-plq0 7376 df-mq0 7377 df-inp 7415 df-iplp 7417 df-imp 7418 df-enr 7675 df-nr 7676 df-mr 7678 |
This theorem is referenced by: pn0sr 7720 negexsr 7721 caucvgsrlemoffval 7745 caucvgsrlemofff 7746 map2psrprg 7754 mulcnsr 7784 mulresr 7787 mulcnsrec 7792 axmulcl 7815 axmulrcl 7816 axmulcom 7820 axmulass 7822 axdistr 7823 axrnegex 7828 |
Copyright terms: Public domain | W3C validator |