ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomnqg Unicode version

Theorem addcomnqg 6940
Description: Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
addcomnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )

Proof of Theorem addcomnqg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6907 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 addpipqqs 6929 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
3 addpipqqs 6929 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( z  .N  y
)  +N  ( w  .N  x ) ) ,  ( w  .N  y ) >. ]  ~Q  )
4 mulcompig 6890 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  =  ( w  .N  x ) )
5 mulcompig 6890 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  =  ( z  .N  y ) )
64, 5oveqan12d 5671 . . . 4  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( w  .N  x )  +N  (
z  .N  y ) ) )
76an42s 556 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( w  .N  x )  +N  (
z  .N  y ) ) )
8 mulclpi 6887 . . . . . 6  |-  ( ( w  e.  N.  /\  x  e.  N. )  ->  ( w  .N  x
)  e.  N. )
98ancoms 264 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( w  .N  x
)  e.  N. )
109ad2ant2rl 495 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( w  .N  x )  e.  N. )
11 mulclpi 6887 . . . . . 6  |-  ( ( z  e.  N.  /\  y  e.  N. )  ->  ( z  .N  y
)  e.  N. )
1211ancoms 264 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( z  .N  y
)  e.  N. )
1312ad2ant2lr 494 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( z  .N  y )  e.  N. )
14 addcompig 6888 . . . 4  |-  ( ( ( w  .N  x
)  e.  N.  /\  ( z  .N  y
)  e.  N. )  ->  ( ( w  .N  x )  +N  (
z  .N  y ) )  =  ( ( z  .N  y )  +N  ( w  .N  x ) ) )
1510, 13, 14syl2anc 403 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
w  .N  x )  +N  ( z  .N  y ) )  =  ( ( z  .N  y )  +N  (
w  .N  x ) ) )
167, 15eqtrd 2120 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( z  .N  y )  +N  (
w  .N  x ) ) )
17 mulcompig 6890 . . 3  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( w  .N  y ) )
1817ad2ant2l 492 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  =  ( w  .N  y ) )
191, 2, 3, 16, 18ecovicom 6400 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438  (class class class)co 5652   N.cnpi 6831    +N cpli 6832    .N cmi 6833    ~Q ceq 6838   Q.cnq 6839    +Q cplq 6841
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-pli 6864  df-mi 6865  df-plpq 6903  df-enq 6906  df-nqqs 6907  df-plqqs 6908
This theorem is referenced by:  lt2addnq  6963  ltaddnq  6966  prarloclemarch2  6978  addlocprlemeqgt  7091  addlocprlemgt  7093  addclpr  7096  prmuloclemcalc  7124  addcomprg  7137  distrlem4prl  7143  distrlem4pru  7144  ltexprlemm  7159  ltexprlemdisj  7165  ltexprlemloc  7166  ltexprlemfl  7168  ltexprlemrl  7169  ltexprlemfu  7170  ltexprlemru  7171  addcanprleml  7173  addcanprlemu  7174  prplnqu  7179  aptiprleml  7198  aptiprlemu  7199  cauappcvgprlemopl  7205  cauappcvgprlemlol  7206  cauappcvgprlemdisj  7210  cauappcvgprlemloc  7211  cauappcvgprlemladdfu  7213  cauappcvgprlemladdfl  7214  cauappcvgprlemladdru  7215  cauappcvgprlemladdrl  7216  cauappcvgprlem1  7218  caucvgprlemnkj  7225  caucvgprlemnbj  7226  caucvgprlemopl  7228  caucvgprlemlol  7229  caucvgprlemloc  7234  caucvgprlemladdfu  7236  caucvgprlemladdrl  7237  caucvgprprlemopl  7256  caucvgprprlemlol  7257
  Copyright terms: Public domain W3C validator