ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomnqg Unicode version

Theorem addcomnqg 7564
Description: Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
addcomnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )

Proof of Theorem addcomnqg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7531 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 addpipqqs 7553 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( x  .N  w
)  +N  ( y  .N  z ) ) ,  ( y  .N  w ) >. ]  ~Q  )
3 addpipqqs 7553 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( z  .N  y
)  +N  ( w  .N  x ) ) ,  ( w  .N  y ) >. ]  ~Q  )
4 mulcompig 7514 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  =  ( w  .N  x ) )
5 mulcompig 7514 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  =  ( z  .N  y ) )
64, 5oveqan12d 6019 . . . 4  |-  ( ( ( x  e.  N.  /\  w  e.  N. )  /\  ( y  e.  N.  /\  z  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( w  .N  x )  +N  (
z  .N  y ) ) )
76an42s 591 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( w  .N  x )  +N  (
z  .N  y ) ) )
8 mulclpi 7511 . . . . . 6  |-  ( ( w  e.  N.  /\  x  e.  N. )  ->  ( w  .N  x
)  e.  N. )
98ancoms 268 . . . . 5  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( w  .N  x
)  e.  N. )
109ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( w  .N  x )  e.  N. )
11 mulclpi 7511 . . . . . 6  |-  ( ( z  e.  N.  /\  y  e.  N. )  ->  ( z  .N  y
)  e.  N. )
1211ancoms 268 . . . . 5  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( z  .N  y
)  e.  N. )
1312ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( z  .N  y )  e.  N. )
14 addcompig 7512 . . . 4  |-  ( ( ( w  .N  x
)  e.  N.  /\  ( z  .N  y
)  e.  N. )  ->  ( ( w  .N  x )  +N  (
z  .N  y ) )  =  ( ( z  .N  y )  +N  ( w  .N  x ) ) )
1510, 13, 14syl2anc 411 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
w  .N  x )  +N  ( z  .N  y ) )  =  ( ( z  .N  y )  +N  (
w  .N  x ) ) )
167, 15eqtrd 2262 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  w )  +N  ( y  .N  z ) )  =  ( ( z  .N  y )  +N  (
w  .N  x ) ) )
17 mulcompig 7514 . . 3  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( w  .N  y ) )
1817ad2ant2l 508 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  =  ( w  .N  y ) )
191, 2, 3, 16, 18ecovicom 6788 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6000   N.cnpi 7455    +N cpli 7456    .N cmi 7457    ~Q ceq 7462   Q.cnq 7463    +Q cplq 7465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-plpq 7527  df-enq 7530  df-nqqs 7531  df-plqqs 7532
This theorem is referenced by:  lt2addnq  7587  ltaddnq  7590  prarloclemarch2  7602  addlocprlemeqgt  7715  addlocprlemgt  7717  addclpr  7720  prmuloclemcalc  7748  addcomprg  7761  distrlem4prl  7767  distrlem4pru  7768  ltexprlemm  7783  ltexprlemdisj  7789  ltexprlemloc  7790  ltexprlemfl  7792  ltexprlemrl  7793  ltexprlemfu  7794  ltexprlemru  7795  addcanprleml  7797  addcanprlemu  7798  prplnqu  7803  aptiprleml  7822  aptiprlemu  7823  cauappcvgprlemopl  7829  cauappcvgprlemlol  7830  cauappcvgprlemdisj  7834  cauappcvgprlemloc  7835  cauappcvgprlemladdfu  7837  cauappcvgprlemladdfl  7838  cauappcvgprlemladdru  7839  cauappcvgprlemladdrl  7840  cauappcvgprlem1  7842  caucvgprlemnkj  7849  caucvgprlemnbj  7850  caucvgprlemopl  7852  caucvgprlemlol  7853  caucvgprlemloc  7858  caucvgprlemladdfu  7860  caucvgprlemladdrl  7861  caucvgprprlemopl  7880  caucvgprprlemlol  7881
  Copyright terms: Public domain W3C validator