ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrnqg Unicode version

Theorem distrnqg 7388
Description: Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
distrnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) ) )

Proof of Theorem distrnqg
Dummy variables  u  v  w  x  y  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7349 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 addpipqqs 7371 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  +Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )
3 mulpipqqs 7374 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. ( ( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
x  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) ) ,  ( y  .N  ( w  .N  u
) ) >. ]  ~Q  )
4 mulclpi 7329 . . . . . . 7  |-  ( ( x  e.  N.  /\  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )  ->  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  e.  N. )
5 simpl 109 . . . . . . . 8  |-  ( ( y  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  y  e.  N. )
6 mulclpi 7329 . . . . . . . 8  |-  ( ( y  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( y  .N  (
w  .N  u ) )  e.  N. )
75, 6jca 306 . . . . . . 7  |-  ( ( y  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( y  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
)
84, 7anim12i 338 . . . . . 6  |-  ( ( ( x  e.  N.  /\  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )  /\  ( y  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( (
x  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) )  e.  N.  /\  (
y  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
) )
9 an12 561 . . . . . . 7  |-  ( ( ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  e.  N.  /\  ( y  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
)  <->  ( y  e. 
N.  /\  ( (
x  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) )  e.  N.  /\  (
y  .N  ( w  .N  u ) )  e.  N. ) ) )
10 3anass 982 . . . . . . 7  |-  ( ( y  e.  N.  /\  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )  <->  ( y  e.  N.  /\  ( ( x  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) )  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
) )
119, 10bitr4i 187 . . . . . 6  |-  ( ( ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  e.  N.  /\  ( y  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
)  <->  ( y  e. 
N.  /\  ( x  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) )  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )
)
128, 11sylib 122 . . . . 5  |-  ( ( ( x  e.  N.  /\  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )  /\  ( y  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( y  e.  N.  /\  ( x  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) )  e. 
N.  /\  ( y  .N  ( w  .N  u
) )  e.  N. ) )
1312an4s 588 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( y  e.  N.  /\  ( x  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) )  e. 
N.  /\  ( y  .N  ( w  .N  u
) )  e.  N. ) )
14 mulcanenqec 7387 . . . 4  |-  ( ( y  e.  N.  /\  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  e.  N.  /\  ( y  .N  (
w  .N  u ) )  e.  N. )  ->  [ <. ( y  .N  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) ) ) ,  ( y  .N  ( y  .N  ( w  .N  u ) ) )
>. ]  ~Q  =  [ <. ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) ) ,  ( y  .N  ( w  .N  u ) ) >. ]  ~Q  )
1513, 14syl 14 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  [ <. (
y  .N  ( x  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) ) ) ,  ( y  .N  ( y  .N  (
w  .N  u ) ) ) >. ]  ~Q  =  [ <. ( x  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) ) ,  ( y  .N  ( w  .N  u ) )
>. ]  ~Q  )
163, 15eqtr4d 2213 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( ( z  .N  u )  +N  ( w  .N  v
) )  e.  N.  /\  ( w  .N  u
)  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. ( ( z  .N  u
)  +N  ( w  .N  v ) ) ,  ( w  .N  u ) >. ]  ~Q  )  =  [ <. (
y  .N  ( x  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) ) ) ,  ( y  .N  ( y  .N  (
w  .N  u ) ) ) >. ]  ~Q  )
17 mulpipqqs 7374 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
18 mulpipqqs 7374 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. v ,  u >. ]  ~Q  )  =  [ <. (
x  .N  v ) ,  ( y  .N  u ) >. ]  ~Q  )
19 addpipqqs 7371 . 2  |-  ( ( ( ( x  .N  z )  e.  N.  /\  ( y  .N  w
)  e.  N. )  /\  ( ( x  .N  v )  e.  N.  /\  ( y  .N  u
)  e.  N. )
)  ->  ( [ <. ( x  .N  z
) ,  ( y  .N  w ) >. ]  ~Q  +Q  [ <. ( x  .N  v ) ,  ( y  .N  u ) >. ]  ~Q  )  =  [ <. (
( ( x  .N  z )  .N  (
y  .N  u ) )  +N  ( ( y  .N  w )  .N  ( x  .N  v ) ) ) ,  ( ( y  .N  w )  .N  ( y  .N  u
) ) >. ]  ~Q  )
20 mulclpi 7329 . . . . 5  |-  ( ( z  e.  N.  /\  u  e.  N. )  ->  ( z  .N  u
)  e.  N. )
21 mulclpi 7329 . . . . 5  |-  ( ( w  e.  N.  /\  v  e.  N. )  ->  ( w  .N  v
)  e.  N. )
22 addclpi 7328 . . . . 5  |-  ( ( ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( z  .N  u )  +N  (
w  .N  v ) )  e.  N. )
2320, 21, 22syl2an 289 . . . 4  |-  ( ( ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
2423an42s 589 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
25 mulclpi 7329 . . . 4  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
2625ad2ant2l 508 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
2724, 26jca 306 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( z  .N  u
)  +N  ( w  .N  v ) )  e.  N.  /\  (
w  .N  u )  e.  N. ) )
28 mulclpi 7329 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
29 mulclpi 7329 . . . 4  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
3028, 29anim12i 338 . . 3  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( y  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
3130an4s 588 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .N  z )  e.  N.  /\  (
y  .N  w )  e.  N. ) )
32 mulclpi 7329 . . . 4  |-  ( ( x  e.  N.  /\  v  e.  N. )  ->  ( x  .N  v
)  e.  N. )
33 mulclpi 7329 . . . 4  |-  ( ( y  e.  N.  /\  u  e.  N. )  ->  ( y  .N  u
)  e.  N. )
3432, 33anim12i 338 . . 3  |-  ( ( ( x  e.  N.  /\  v  e.  N. )  /\  ( y  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  v )  e.  N.  /\  (
y  .N  u )  e.  N. ) )
3534an4s 588 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  v )  e.  N.  /\  (
y  .N  u )  e.  N. ) )
36 an42 587 . . . . 5  |-  ( ( ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  <->  ( ( z  e.  N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
) )
3736anbi2i 457 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( ( z  e. 
N.  /\  u  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
) )  <->  ( (
x  e.  N.  /\  y  e.  N. )  /\  ( ( z  e. 
N.  /\  w  e.  N. )  /\  (
v  e.  N.  /\  u  e.  N. )
) ) )
38 3anass 982 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  <->  ( ( x  e.  N.  /\  y  e.  N. )  /\  (
( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
) ) )
39 3anass 982 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  <->  ( ( x  e.  N.  /\  y  e.  N. )  /\  (
( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) ) )
4037, 38, 393bitr4i 212 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  <->  ( ( x  e.  N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
) )
41 mulclpi 7329 . . . . . 6  |-  ( ( y  e.  N.  /\  x  e.  N. )  ->  ( y  .N  x
)  e.  N. )
4241ancoms 268 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( y  .N  x
)  e.  N. )
43 distrpig 7334 . . . . 5  |-  ( ( ( y  .N  x
)  e.  N.  /\  ( z  .N  u
)  e.  N.  /\  ( w  .N  v
)  e.  N. )  ->  ( ( y  .N  x )  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  =  ( ( ( y  .N  x
)  .N  ( z  .N  u ) )  +N  ( ( y  .N  x )  .N  ( w  .N  v
) ) ) )
4442, 20, 21, 43syl3an 1280 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) )  =  ( ( ( y  .N  x )  .N  ( z  .N  u
) )  +N  (
( y  .N  x
)  .N  ( w  .N  v ) ) ) )
45 simp1r 1022 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  y  e.  N. )
46 simp1l 1021 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  x  e.  N. )
47203ad2ant2 1019 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  u )  e.  N. )
48213ad2ant3 1020 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  v )  e.  N. )
4947, 48, 22syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  u )  +N  ( w  .N  v ) )  e. 
N. )
50 mulasspig 7333 . . . . 5  |-  ( ( y  e.  N.  /\  x  e.  N.  /\  (
( z  .N  u
)  +N  ( w  .N  v ) )  e.  N. )  -> 
( ( y  .N  x )  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) )  =  ( y  .N  ( x  .N  ( ( z  .N  u )  +N  (
w  .N  v ) ) ) ) )
5145, 46, 49, 50syl3anc 1238 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( ( z  .N  u )  +N  ( w  .N  v
) ) )  =  ( y  .N  (
x  .N  ( ( z  .N  u )  +N  ( w  .N  v ) ) ) ) )
52 mulcompig 7332 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
5352oveq1d 5892 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( ( x  .N  y )  .N  (
z  .N  u ) )  =  ( ( y  .N  x )  .N  ( z  .N  u ) ) )
5453adantr 276 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  y )  .N  ( z  .N  u ) )  =  ( ( y  .N  x )  .N  (
z  .N  u ) ) )
55 simpll 527 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
56 simplr 528 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
57 simprl 529 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
58 mulcompig 7332 . . . . . . . . 9  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
5958adantl 277 . . . . . . . 8  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
60 mulasspig 7333 . . . . . . . . 9  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6160adantl 277 . . . . . . . 8  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
62 simprr 531 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
63 mulclpi 7329 . . . . . . . . 9  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
6463adantl 277 . . . . . . . 8  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
6555, 56, 57, 59, 61, 62, 64caov4d 6061 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  y )  .N  ( z  .N  u ) )  =  ( ( x  .N  z )  .N  (
y  .N  u ) ) )
6654, 65eqtr3d 2212 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( z  .N  u ) )  =  ( ( x  .N  z )  .N  (
y  .N  u ) ) )
67663adant3 1017 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( z  .N  u ) )  =  ( ( x  .N  z )  .N  (
y  .N  u ) ) )
68 simplr 528 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  y  e.  N. )
69 simpll 527 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  x  e.  N. )
70 simprl 529 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  w  e.  N. )
7158adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
7260adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
73 simprr 531 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  v  e.  N. )
7463adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
7568, 69, 70, 71, 72, 73, 74caov4d 6061 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( w  .N  v ) )  =  ( ( y  .N  w )  .N  (
x  .N  v ) ) )
76753adant2 1016 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  x )  .N  ( w  .N  v ) )  =  ( ( y  .N  w )  .N  (
x  .N  v ) ) )
7767, 76oveq12d 5895 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
( y  .N  x
)  .N  ( z  .N  u ) )  +N  ( ( y  .N  x )  .N  ( w  .N  v
) ) )  =  ( ( ( x  .N  z )  .N  ( y  .N  u
) )  +N  (
( y  .N  w
)  .N  ( x  .N  v ) ) ) )
7844, 51, 773eqtr3d 2218 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( y  .N  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) ) )  =  ( ( ( x  .N  z )  .N  (
y  .N  u ) )  +N  ( ( y  .N  w )  .N  ( x  .N  v ) ) ) )
7940, 78sylbir 135 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( x  .N  (
( z  .N  u
)  +N  ( w  .N  v ) ) ) )  =  ( ( ( x  .N  z )  .N  (
y  .N  u ) )  +N  ( ( y  .N  w )  .N  ( x  .N  v ) ) ) )
80703adant2 1016 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  w  e.  N. )
81623adant3 1017 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  u  e.  N. )
8280, 81, 25syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
83 mulasspig 7333 . . . . 5  |-  ( ( y  e.  N.  /\  y  e.  N.  /\  (
w  .N  u )  e.  N. )  -> 
( ( y  .N  y )  .N  (
w  .N  u ) )  =  ( y  .N  ( y  .N  ( w  .N  u
) ) ) )
8445, 45, 82, 83syl3anc 1238 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  y )  .N  ( w  .N  u ) )  =  ( y  .N  (
y  .N  ( w  .N  u ) ) ) )
8558adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
8660adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
8763adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
8845, 45, 80, 85, 86, 81, 87caov4d 6061 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( (
y  .N  y )  .N  ( w  .N  u ) )  =  ( ( y  .N  w )  .N  (
y  .N  u ) ) )
8984, 88eqtr3d 2212 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  u  e.  N. )  /\  ( w  e.  N.  /\  v  e.  N. )
)  ->  ( y  .N  ( y  .N  (
w  .N  u ) ) )  =  ( ( y  .N  w
)  .N  ( y  .N  u ) ) )
9040, 89sylbir 135 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  ( y  .N  (
w  .N  u ) ) )  =  ( ( y  .N  w
)  .N  ( y  .N  u ) ) )
911, 2, 16, 17, 18, 19, 27, 31, 35, 79, 90ecovidi 6649 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3597  (class class class)co 5877   [cec 6535   N.cnpi 7273    +N cpli 7274    .N cmi 7275    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283    .Q cmq 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351
This theorem is referenced by:  ltaddnq  7408  halfnqq  7411  addnqprl  7530  addnqpru  7531  prmuloclemcalc  7566  distrlem1prl  7583  distrlem1pru  7584  distrlem4prl  7585  distrlem4pru  7586
  Copyright terms: Public domain W3C validator