ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unpreima Unicode version

Theorem unpreima 5690
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima  |-  ( Fun 
F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )

Proof of Theorem unpreima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfn 5289 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 elpreima 5684 . . . 4  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " ( A  u.  B ) )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  ( A  u.  B ) ) ) )
3 elun 3305 . . . . . . 7  |-  ( ( F `  x )  e.  ( A  u.  B )  <->  ( ( F `  x )  e.  A  \/  ( F `  x )  e.  B ) )
43anbi2i 457 . . . . . 6  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  ( A  u.  B ) )  <-> 
( x  e.  dom  F  /\  ( ( F `
 x )  e.  A  \/  ( F `
 x )  e.  B ) ) )
5 andi 819 . . . . . 6  |-  ( ( x  e.  dom  F  /\  ( ( F `  x )  e.  A  \/  ( F `  x
)  e.  B ) )  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  \/  ( x  e.  dom  F  /\  ( F `  x )  e.  B
) ) )
64, 5bitri 184 . . . . 5  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  ( A  u.  B ) )  <-> 
( ( x  e. 
dom  F  /\  ( F `  x )  e.  A )  \/  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) ) )
7 elun 3305 . . . . . 6  |-  ( x  e.  ( ( `' F " A )  u.  ( `' F " B ) )  <->  ( x  e.  ( `' F " A )  \/  x  e.  ( `' F " B ) ) )
8 elpreima 5684 . . . . . . 7  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " A )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  A
) ) )
9 elpreima 5684 . . . . . . 7  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " B )  <-> 
( x  e.  dom  F  /\  ( F `  x )  e.  B
) ) )
108, 9orbi12d 794 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( ( x  e.  ( `' F " A )  \/  x  e.  ( `' F " B ) )  <->  ( (
x  e.  dom  F  /\  ( F `  x
)  e.  A )  \/  ( x  e. 
dom  F  /\  ( F `  x )  e.  B ) ) ) )
117, 10bitrid 192 . . . . 5  |-  ( F  Fn  dom  F  -> 
( x  e.  ( ( `' F " A )  u.  ( `' F " B ) )  <->  ( ( x  e.  dom  F  /\  ( F `  x )  e.  A )  \/  ( x  e.  dom  F  /\  ( F `  x )  e.  B
) ) ) )
126, 11bitr4id 199 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( x  e. 
dom  F  /\  ( F `  x )  e.  ( A  u.  B
) )  <->  x  e.  ( ( `' F " A )  u.  ( `' F " B ) ) ) )
132, 12bitrd 188 . . 3  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " ( A  u.  B ) )  <-> 
x  e.  ( ( `' F " A )  u.  ( `' F " B ) ) ) )
1413eqrdv 2194 . 2  |-  ( F  Fn  dom  F  -> 
( `' F "
( A  u.  B
) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
151, 14sylbi 121 1  |-  ( Fun 
F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   `'ccnv 4663   dom cdm 4664   "cima 4667   Fun wfun 5253    Fn wfn 5254   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator