ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn Unicode version

Theorem elznn0nn 9460
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 9448 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 andi 823 . . 3  |-  ( ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
3 df-3or 1003 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )
43anbi2i 457 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) ) )
5 nn0re 9378 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
65pm4.71ri 392 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  N  e. 
NN0 ) )
7 elnn0 9371 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
8 orcom 733 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  <-> 
( N  =  0  \/  N  e.  NN ) )
97, 8bitri 184 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  =  0  \/  N  e.  NN ) )
109anbi2i 457 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
116, 10bitri 184 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
1211orbi1i 768 . . 3  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
132, 4, 123bitr4i 212 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141, 13bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   RRcr 7998   0cc0 7999   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-i2m1 8104  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  peano2z  9482  zindd  9565  expcl2lemap  10773  mulexpzap  10801  expaddzap  10805  expmulzap  10807  absexpzap  11591  bitsfzo  12466  pcid  12847  mulgsubcl  13673  mulgneg  13677  ghmmulg  13793
  Copyright terms: Public domain W3C validator