Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elznn0nn | Unicode version |
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
elznn0nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9189 | . 2 | |
2 | andi 808 | . . 3 | |
3 | df-3or 969 | . . . 4 | |
4 | 3 | anbi2i 453 | . . 3 |
5 | nn0re 9119 | . . . . . 6 | |
6 | 5 | pm4.71ri 390 | . . . . 5 |
7 | elnn0 9112 | . . . . . . 7 | |
8 | orcom 718 | . . . . . . 7 | |
9 | 7, 8 | bitri 183 | . . . . . 6 |
10 | 9 | anbi2i 453 | . . . . 5 |
11 | 6, 10 | bitri 183 | . . . 4 |
12 | 11 | orbi1i 753 | . . 3 |
13 | 2, 4, 12 | 3bitr4i 211 | . 2 |
14 | 1, 13 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 cr 7748 cc0 7749 cneg 8066 cn 8853 cn0 9110 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-i2m1 7854 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: peano2z 9223 zindd 9305 expcl2lemap 10463 mulexpzap 10491 expaddzap 10495 expmulzap 10497 absexpzap 11018 pcid 12251 |
Copyright terms: Public domain | W3C validator |