| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elznn0nn | Unicode version | ||
| Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| elznn0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9328 |
. 2
| |
| 2 | andi 819 |
. . 3
| |
| 3 | df-3or 981 |
. . . 4
| |
| 4 | 3 | anbi2i 457 |
. . 3
|
| 5 | nn0re 9258 |
. . . . . 6
| |
| 6 | 5 | pm4.71ri 392 |
. . . . 5
|
| 7 | elnn0 9251 |
. . . . . . 7
| |
| 8 | orcom 729 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | anbi2i 457 |
. . . . 5
|
| 11 | 6, 10 | bitri 184 |
. . . 4
|
| 12 | 11 | orbi1i 764 |
. . 3
|
| 13 | 2, 4, 12 | 3bitr4i 212 |
. 2
|
| 14 | 1, 13 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-i2m1 7984 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: peano2z 9362 zindd 9444 expcl2lemap 10643 mulexpzap 10671 expaddzap 10675 expmulzap 10677 absexpzap 11245 bitsfzo 12119 pcid 12493 mulgsubcl 13266 mulgneg 13270 ghmmulg 13386 |
| Copyright terms: Public domain | W3C validator |