| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elznn0nn | Unicode version | ||
| Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| elznn0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9409 |
. 2
| |
| 2 | andi 820 |
. . 3
| |
| 3 | df-3or 982 |
. . . 4
| |
| 4 | 3 | anbi2i 457 |
. . 3
|
| 5 | nn0re 9339 |
. . . . . 6
| |
| 6 | 5 | pm4.71ri 392 |
. . . . 5
|
| 7 | elnn0 9332 |
. . . . . . 7
| |
| 8 | orcom 730 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | anbi2i 457 |
. . . . 5
|
| 11 | 6, 10 | bitri 184 |
. . . 4
|
| 12 | 11 | orbi1i 765 |
. . 3
|
| 13 | 2, 4, 12 | 3bitr4i 212 |
. 2
|
| 14 | 1, 13 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-i2m1 8065 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: peano2z 9443 zindd 9526 expcl2lemap 10733 mulexpzap 10761 expaddzap 10765 expmulzap 10767 absexpzap 11506 bitsfzo 12381 pcid 12762 mulgsubcl 13587 mulgneg 13591 ghmmulg 13707 |
| Copyright terms: Public domain | W3C validator |