ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn Unicode version

Theorem elznn0nn 9331
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 9319 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 andi 819 . . 3  |-  ( ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
3 df-3or 981 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )
43anbi2i 457 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) ) )
5 nn0re 9249 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
65pm4.71ri 392 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  N  e. 
NN0 ) )
7 elnn0 9242 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
8 orcom 729 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  <-> 
( N  =  0  \/  N  e.  NN ) )
97, 8bitri 184 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  =  0  \/  N  e.  NN ) )
109anbi2i 457 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
116, 10bitri 184 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
1211orbi1i 764 . . 3  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
132, 4, 123bitr4i 212 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141, 13bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2164   RRcr 7871   0cc0 7872   -ucneg 8191   NNcn 8982   NN0cn0 9240   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-i2m1 7977  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  peano2z  9353  zindd  9435  expcl2lemap  10622  mulexpzap  10650  expaddzap  10654  expmulzap  10656  absexpzap  11224  pcid  12462  mulgsubcl  13206  mulgneg  13210  ghmmulg  13326
  Copyright terms: Public domain W3C validator