ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn Unicode version

Theorem elznn0nn 9281
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 9269 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 andi 819 . . 3  |-  ( ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
3 df-3or 980 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )
43anbi2i 457 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) ) )
5 nn0re 9199 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
65pm4.71ri 392 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  N  e. 
NN0 ) )
7 elnn0 9192 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
8 orcom 729 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  <-> 
( N  =  0  \/  N  e.  NN ) )
97, 8bitri 184 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  =  0  \/  N  e.  NN ) )
109anbi2i 457 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
116, 10bitri 184 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
1211orbi1i 764 . . 3  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
132, 4, 123bitr4i 212 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141, 13bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 978    = wceq 1363    e. wcel 2158   RRcr 7824   0cc0 7825   -ucneg 8143   NNcn 8933   NN0cn0 9190   ZZcz 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-i2m1 7930  ax-rnegex 7934
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268
This theorem is referenced by:  peano2z  9303  zindd  9385  expcl2lemap  10546  mulexpzap  10574  expaddzap  10578  expmulzap  10580  absexpzap  11103  pcid  12337  mulgsubcl  13029  mulgneg  13033
  Copyright terms: Public domain W3C validator