ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elznn0nn Unicode version

Theorem elznn0nn 9267
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 9255 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
2 andi 818 . . 3  |-  ( ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
3 df-3or 979 . . . 4  |-  ( ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )  <-> 
( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) )
43anbi2i 457 . . 3  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  RR  /\  ( ( N  =  0  \/  N  e.  NN )  \/  -u N  e.  NN ) ) )
5 nn0re 9185 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  RR )
65pm4.71ri 392 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  N  e. 
NN0 ) )
7 elnn0 9178 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
8 orcom 728 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  <-> 
( N  =  0  \/  N  e.  NN ) )
97, 8bitri 184 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  =  0  \/  N  e.  NN ) )
109anbi2i 457 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
116, 10bitri 184 . . . 4  |-  ( N  e.  NN0  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN ) ) )
1211orbi1i 763 . . 3  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  <->  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN )
)  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
132, 4, 123bitr4i 212 . 2  |-  ( ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) )  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
141, 13bitri 184 1  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   RRcr 7810   0cc0 7811   -ucneg 8129   NNcn 8919   NN0cn0 9176   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-i2m1 7916  ax-rnegex 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  peano2z  9289  zindd  9371  expcl2lemap  10532  mulexpzap  10560  expaddzap  10564  expmulzap  10566  absexpzap  11089  pcid  12323  mulgsubcl  12997  mulgneg  13001
  Copyright terms: Public domain W3C validator