| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elznn0nn | Unicode version | ||
| Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
| Ref | Expression |
|---|---|
| elznn0nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9376 |
. 2
| |
| 2 | andi 820 |
. . 3
| |
| 3 | df-3or 982 |
. . . 4
| |
| 4 | 3 | anbi2i 457 |
. . 3
|
| 5 | nn0re 9306 |
. . . . . 6
| |
| 6 | 5 | pm4.71ri 392 |
. . . . 5
|
| 7 | elnn0 9299 |
. . . . . . 7
| |
| 8 | orcom 730 |
. . . . . . 7
| |
| 9 | 7, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | anbi2i 457 |
. . . . 5
|
| 11 | 6, 10 | bitri 184 |
. . . 4
|
| 12 | 11 | orbi1i 765 |
. . 3
|
| 13 | 2, 4, 12 | 3bitr4i 212 |
. 2
|
| 14 | 1, 13 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-i2m1 8032 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: peano2z 9410 zindd 9493 expcl2lemap 10698 mulexpzap 10726 expaddzap 10730 expmulzap 10732 absexpzap 11424 bitsfzo 12299 pcid 12680 mulgsubcl 13505 mulgneg 13509 ghmmulg 13625 |
| Copyright terms: Public domain | W3C validator |