Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  findset Unicode version

Theorem findset 15745
Description: Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4645 for a nonconstructive proof of the general case. See bdfind 15746 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
findset  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem findset
StepHypRef Expression
1 simpr1 1005 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  C_  om )
2 simp2 1000 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  (/)  e.  A )
3 df-ral 2488 . . . . . . . 8  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
4 alral 2550 . . . . . . . 8  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
53, 4sylbi 121 . . . . . . 7  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
653ad2ant3 1022 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )
72, 6jca 306 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
8 3anass 984 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  <->  ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
98biimpri 133 . . . . 5  |-  ( ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )
107, 9sylan2 286 . . . 4  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
11 speano5 15744 . . . 4  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
1210, 11syl 14 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  om  C_  A
)
131, 12eqssd 3209 . 2  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  =  om )
1413ex 115 1  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1370    = wceq 1372    e. wcel 2175   A.wral 2483    C_ wss 3165   (/)c0 3459   suc csuc 4410   omcom 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4478  ax-bd0 15613  ax-bdan 15615  ax-bdor 15616  ax-bdex 15619  ax-bdeq 15620  ax-bdel 15621  ax-bdsb 15622  ax-bdsep 15684  ax-infvn 15741
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4416  df-iom 4637  df-bdc 15641  df-bj-ind 15727
This theorem is referenced by:  bdfind  15746
  Copyright terms: Public domain W3C validator