| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > findset | Unicode version | ||
| Description: Bounded induction
(principle of induction when |
| Ref | Expression |
|---|---|
| findset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 |
. . 3
| |
| 2 | simp2 1000 |
. . . . . 6
| |
| 3 | df-ral 2488 |
. . . . . . . 8
| |
| 4 | alral 2550 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant3 1022 |
. . . . . 6
|
| 7 | 2, 6 | jca 306 |
. . . . 5
|
| 8 | 3anass 984 |
. . . . . 6
| |
| 9 | 8 | biimpri 133 |
. . . . 5
|
| 10 | 7, 9 | sylan2 286 |
. . . 4
|
| 11 | speano5 15744 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | 1, 12 | eqssd 3209 |
. 2
|
| 14 | 13 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-nul 4169 ax-pr 4252 ax-un 4478 ax-bd0 15613 ax-bdan 15615 ax-bdor 15616 ax-bdex 15619 ax-bdeq 15620 ax-bdel 15621 ax-bdsb 15622 ax-bdsep 15684 ax-infvn 15741 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4416 df-iom 4637 df-bdc 15641 df-bj-ind 15727 |
| This theorem is referenced by: bdfind 15746 |
| Copyright terms: Public domain | W3C validator |