Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  findset Unicode version

Theorem findset 14782
Description: Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4600 for a nonconstructive proof of the general case. See bdfind 14783 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
findset  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem findset
StepHypRef Expression
1 simpr1 1003 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  C_  om )
2 simp2 998 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  (/)  e.  A )
3 df-ral 2460 . . . . . . . 8  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
4 alral 2522 . . . . . . . 8  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
53, 4sylbi 121 . . . . . . 7  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
653ad2ant3 1020 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )
72, 6jca 306 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
8 3anass 982 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  <->  ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
98biimpri 133 . . . . 5  |-  ( ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )
107, 9sylan2 286 . . . 4  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
11 speano5 14781 . . . 4  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
1210, 11syl 14 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  om  C_  A
)
131, 12eqssd 3174 . 2  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  =  om )
1413ex 115 1  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   (/)c0 3424   suc csuc 4367   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14650  ax-bdan 14652  ax-bdor 14653  ax-bdex 14656  ax-bdeq 14657  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721  ax-infvn 14778
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14678  df-bj-ind 14764
This theorem is referenced by:  bdfind  14783
  Copyright terms: Public domain W3C validator