Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  findset Unicode version

Theorem findset 13132
Description: Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4508 for a nonconstructive proof of the general case. See bdfind 13133 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
findset  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem findset
StepHypRef Expression
1 simpr1 987 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  C_  om )
2 simp2 982 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  (/)  e.  A )
3 df-ral 2419 . . . . . . . 8  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
4 alral 2476 . . . . . . . 8  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
53, 4sylbi 120 . . . . . . 7  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
653ad2ant3 1004 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )
72, 6jca 304 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
8 3anass 966 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  <->  ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
98biimpri 132 . . . . 5  |-  ( ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )
107, 9sylan2 284 . . . 4  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
11 speano5 13131 . . . 4  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
1210, 11syl 14 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  om  C_  A
)
131, 12eqssd 3109 . 2  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  =  om )
1413ex 114 1  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2414    C_ wss 3066   (/)c0 3358   suc csuc 4282   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-nul 4049  ax-pr 4126  ax-un 4350  ax-bd0 13000  ax-bdan 13002  ax-bdor 13003  ax-bdex 13006  ax-bdeq 13007  ax-bdel 13008  ax-bdsb 13009  ax-bdsep 13071  ax-infvn 13128
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-suc 4288  df-iom 4500  df-bdc 13028  df-bj-ind 13114
This theorem is referenced by:  bdfind  13133
  Copyright terms: Public domain W3C validator