Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  findset Unicode version

Theorem findset 15558
Description: Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4635 for a nonconstructive proof of the general case. See bdfind 15559 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
findset  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem findset
StepHypRef Expression
1 simpr1 1005 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  C_  om )
2 simp2 1000 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  (/)  e.  A )
3 df-ral 2480 . . . . . . . 8  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
4 alral 2542 . . . . . . . 8  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
53, 4sylbi 121 . . . . . . 7  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
653ad2ant3 1022 . . . . . 6  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )
72, 6jca 306 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
8 3anass 984 . . . . . 6  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  <->  ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
98biimpri 133 . . . . 5  |-  ( ( A  e.  V  /\  ( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )  ->  ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) ) )
107, 9sylan2 286 . . . 4  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
11 speano5 15557 . . . 4  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
1210, 11syl 14 . . 3  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  om  C_  A
)
131, 12eqssd 3200 . 2  |-  ( ( A  e.  V  /\  ( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )
)  ->  A  =  om )
1413ex 115 1  |-  ( A  e.  V  ->  (
( A  C_  om  /\  (/) 
e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3450   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15426  ax-bdan 15428  ax-bdor 15429  ax-bdex 15432  ax-bdeq 15433  ax-bdel 15434  ax-bdsb 15435  ax-bdsep 15497  ax-infvn 15554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-bdc 15454  df-bj-ind 15540
This theorem is referenced by:  bdfind  15559
  Copyright terms: Public domain W3C validator