Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > findset | Unicode version |
Description: Bounded induction (principle of induction when is assumed to be a set) allowing a proof from basic constructive axioms. See find 4576 for a nonconstructive proof of the general case. See bdfind 13828 for a proof when is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
findset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 993 | . . 3 | |
2 | simp2 988 | . . . . . 6 | |
3 | df-ral 2449 | . . . . . . . 8 | |
4 | alral 2511 | . . . . . . . 8 | |
5 | 3, 4 | sylbi 120 | . . . . . . 7 |
6 | 5 | 3ad2ant3 1010 | . . . . . 6 |
7 | 2, 6 | jca 304 | . . . . 5 |
8 | 3anass 972 | . . . . . 6 | |
9 | 8 | biimpri 132 | . . . . 5 |
10 | 7, 9 | sylan2 284 | . . . 4 |
11 | speano5 13826 | . . . 4 | |
12 | 10, 11 | syl 14 | . . 3 |
13 | 1, 12 | eqssd 3159 | . 2 |
14 | 13 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wral 2444 wss 3116 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdan 13697 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bdfind 13828 |
Copyright terms: Public domain | W3C validator |