| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > findset | Unicode version | ||
| Description: Bounded induction
(principle of induction when |
| Ref | Expression |
|---|---|
| findset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 |
. . 3
| |
| 2 | simp2 1000 |
. . . . . 6
| |
| 3 | df-ral 2480 |
. . . . . . . 8
| |
| 4 | alral 2542 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant3 1022 |
. . . . . 6
|
| 7 | 2, 6 | jca 306 |
. . . . 5
|
| 8 | 3anass 984 |
. . . . . 6
| |
| 9 | 8 | biimpri 133 |
. . . . 5
|
| 10 | 7, 9 | sylan2 286 |
. . . 4
|
| 11 | speano5 15674 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | 1, 12 | eqssd 3201 |
. 2
|
| 14 | 13 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdan 15545 ax-bdor 15546 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: bdfind 15676 |
| Copyright terms: Public domain | W3C validator |