| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > findset | Unicode version | ||
| Description: Bounded induction
(principle of induction when |
| Ref | Expression |
|---|---|
| findset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1027 |
. . 3
| |
| 2 | simp2 1022 |
. . . . . 6
| |
| 3 | df-ral 2513 |
. . . . . . . 8
| |
| 4 | alral 2575 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant3 1044 |
. . . . . 6
|
| 7 | 2, 6 | jca 306 |
. . . . 5
|
| 8 | 3anass 1006 |
. . . . . 6
| |
| 9 | 8 | biimpri 133 |
. . . . 5
|
| 10 | 7, 9 | sylan2 286 |
. . . 4
|
| 11 | speano5 16265 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | 1, 12 | eqssd 3241 |
. 2
|
| 14 | 13 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdan 16136 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 ax-infvn 16262 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: bdfind 16267 |
| Copyright terms: Public domain | W3C validator |