| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > findset | Unicode version | ||
| Description: Bounded induction
(principle of induction when |
| Ref | Expression |
|---|---|
| findset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1006 |
. . 3
| |
| 2 | simp2 1001 |
. . . . . 6
| |
| 3 | df-ral 2490 |
. . . . . . . 8
| |
| 4 | alral 2552 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant3 1023 |
. . . . . 6
|
| 7 | 2, 6 | jca 306 |
. . . . 5
|
| 8 | 3anass 985 |
. . . . . 6
| |
| 9 | 8 | biimpri 133 |
. . . . 5
|
| 10 | 7, 9 | sylan2 286 |
. . . 4
|
| 11 | speano5 16018 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | 1, 12 | eqssd 3214 |
. 2
|
| 14 | 13 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4178 ax-pr 4261 ax-un 4488 ax-bd0 15887 ax-bdan 15889 ax-bdor 15890 ax-bdex 15893 ax-bdeq 15894 ax-bdel 15895 ax-bdsb 15896 ax-bdsep 15958 ax-infvn 16015 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 df-bdc 15915 df-bj-ind 16001 |
| This theorem is referenced by: bdfind 16020 |
| Copyright terms: Public domain | W3C validator |