Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omex Unicode version

Theorem bj-omex 13199
Description: Proof of omex 4507 from ax-infvn 13198. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omex  |-  om  e.  _V

Proof of Theorem bj-omex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-infvn 13198 . 2  |-  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) )
2 bj-2inf 13195 . 2  |-  ( om  e.  _V  <->  E. x
(Ind  x  /\  A. y (Ind  y  ->  x 
C_  y ) ) )
31, 2mpbir 145 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329   E.wex 1468    e. wcel 1480   _Vcvv 2686    C_ wss 3071   omcom 4504  Ind wind 13183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-bd0 13070  ax-bdor 13073  ax-bdex 13076  ax-bdeq 13077  ax-bdel 13078  ax-bdsb 13079  ax-bdsep 13141  ax-infvn 13198
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13098  df-bj-ind 13184
This theorem is referenced by:  bdpeano5  13200  speano5  13201  bdfind  13203  bj-omtrans  13213  bj-omelon  13218
  Copyright terms: Public domain W3C validator