Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdpeano5 GIF version

Theorem bdpeano5 14665
Description: Bounded version of peano5 4597. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdpeano5.bd BOUNDED 𝐴
Assertion
Ref Expression
bdpeano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdpeano5
StepHypRef Expression
1 bdpeano5.bd . . 3 BOUNDED 𝐴
2 bj-omex 14664 . . 3 ω ∈ V
31, 2bdinex1 14621 . 2 (ω ∩ 𝐴) ∈ V
4 peano5set 14662 . 2 ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
53, 4ax-mp 5 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wral 2455  Vcvv 2737  cin 3128  wss 3129  c0 3422  suc csuc 4365  ωcom 4589  BOUNDED wbdc 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4129  ax-pr 4209  ax-un 4433  ax-bd0 14535  ax-bdor 14538  ax-bdex 14541  ax-bdeq 14542  ax-bdel 14543  ax-bdsb 14544  ax-bdsep 14606  ax-infvn 14663
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-pr 3599  df-uni 3810  df-int 3845  df-suc 4371  df-iom 4590  df-bdc 14563  df-bj-ind 14649
This theorem is referenced by:  bj-bdfindis  14669
  Copyright terms: Public domain W3C validator