Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdpeano5 GIF version

Theorem bdpeano5 11838
Description: Bounded version of peano5 4413. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdpeano5.bd BOUNDED 𝐴
Assertion
Ref Expression
bdpeano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdpeano5
StepHypRef Expression
1 bdpeano5.bd . . 3 BOUNDED 𝐴
2 bj-omex 11837 . . 3 ω ∈ V
31, 2bdinex1 11790 . 2 (ω ∩ 𝐴) ∈ V
4 peano5set 11835 . 2 ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
53, 4ax-mp 7 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1438  wral 2359  Vcvv 2619  cin 2998  wss 2999  c0 3286  suc csuc 4192  ωcom 4405  BOUNDED wbdc 11731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-nul 3965  ax-pr 4036  ax-un 4260  ax-bd0 11704  ax-bdor 11707  ax-bdex 11710  ax-bdeq 11711  ax-bdel 11712  ax-bdsb 11713  ax-bdsep 11775  ax-infvn 11836
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-sn 3452  df-pr 3453  df-uni 3654  df-int 3689  df-suc 4198  df-iom 4406  df-bdc 11732  df-bj-ind 11822
This theorem is referenced by:  bj-bdfindis  11842
  Copyright terms: Public domain W3C validator