| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdpeano5 | GIF version | ||
| Description: Bounded version of peano5 4650. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdpeano5.bd | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdpeano5 | ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdpeano5.bd | . . 3 ⊢ BOUNDED 𝐴 | |
| 2 | bj-omex 15952 | . . 3 ⊢ ω ∈ V | |
| 3 | 1, 2 | bdinex1 15909 | . 2 ⊢ (ω ∩ 𝐴) ∈ V |
| 4 | peano5set 15950 | . 2 ⊢ ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ∩ cin 3166 ⊆ wss 3167 ∅c0 3461 suc csuc 4416 ωcom 4642 BOUNDED wbdc 15850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4174 ax-pr 4257 ax-un 4484 ax-bd0 15823 ax-bdor 15826 ax-bdex 15829 ax-bdeq 15830 ax-bdel 15831 ax-bdsb 15832 ax-bdsep 15894 ax-infvn 15951 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-sn 3640 df-pr 3641 df-uni 3853 df-int 3888 df-suc 4422 df-iom 4643 df-bdc 15851 df-bj-ind 15937 |
| This theorem is referenced by: bj-bdfindis 15957 |
| Copyright terms: Public domain | W3C validator |