Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdpeano5 GIF version

Theorem bdpeano5 15133
Description: Bounded version of peano5 4612. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdpeano5.bd BOUNDED 𝐴
Assertion
Ref Expression
bdpeano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdpeano5
StepHypRef Expression
1 bdpeano5.bd . . 3 BOUNDED 𝐴
2 bj-omex 15132 . . 3 ω ∈ V
31, 2bdinex1 15089 . 2 (ω ∩ 𝐴) ∈ V
4 peano5set 15130 . 2 ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
53, 4ax-mp 5 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160  wral 2468  Vcvv 2752  cin 3143  wss 3144  c0 3437  suc csuc 4380  ωcom 4604  BOUNDED wbdc 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4144  ax-pr 4224  ax-un 4448  ax-bd0 15003  ax-bdor 15006  ax-bdex 15009  ax-bdeq 15010  ax-bdel 15011  ax-bdsb 15012  ax-bdsep 15074  ax-infvn 15131
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-suc 4386  df-iom 4605  df-bdc 15031  df-bj-ind 15117
This theorem is referenced by:  bj-bdfindis  15137
  Copyright terms: Public domain W3C validator