| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdpeano5 | GIF version | ||
| Description: Bounded version of peano5 4667. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdpeano5.bd | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bdpeano5 | ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdpeano5.bd | . . 3 ⊢ BOUNDED 𝐴 | |
| 2 | bj-omex 16215 | . . 3 ⊢ ω ∈ V | |
| 3 | 1, 2 | bdinex1 16172 | . 2 ⊢ (ω ∩ 𝐴) ∈ V |
| 4 | peano5set 16213 | . 2 ⊢ ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ∩ cin 3176 ⊆ wss 3177 ∅c0 3471 suc csuc 4433 ωcom 4659 BOUNDED wbdc 16113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-nul 4189 ax-pr 4272 ax-un 4501 ax-bd0 16086 ax-bdor 16089 ax-bdex 16092 ax-bdeq 16093 ax-bdel 16094 ax-bdsb 16095 ax-bdsep 16157 ax-infvn 16214 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-sn 3652 df-pr 3653 df-uni 3868 df-int 3903 df-suc 4439 df-iom 4660 df-bdc 16114 df-bj-ind 16200 |
| This theorem is referenced by: bj-bdfindis 16220 |
| Copyright terms: Public domain | W3C validator |