![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bi1 | Unicode version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
bi1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simpli 109 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simpld 110 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biimpi 118 bicom1 129 biimpd 142 ibd 176 pm5.74 177 bi3ant 222 pm5.501 242 pm5.32d 438 pm5.19 657 con4biddc 792 con1biimdc 805 bijadc 814 pclem6 1310 albi 1402 exbi 1540 equsexd 1664 cbv2h 1681 sbiedh 1717 eumo0 1979 ceqsalt 2645 vtoclgft 2669 spcgft 2696 pm13.183 2754 reu6 2804 reu3 2805 sbciegft 2869 ddifstab 3132 fv3 5328 prnmaxl 7047 prnminu 7048 elabgft1 11678 elabgf2 11680 bj-axemptylem 11783 bj-notbi 11816 bj-inf2vn 11869 bj-inf2vn2 11870 bj-nn0sucALT 11873 |
Copyright terms: Public domain | W3C validator |