Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnord Unicode version

Theorem bj-nnord 15063
Description: A natural number is an ordinal class. Constructive proof of nnord 4623. Can also be proved from bj-nnelon 15064 if the latter is proved from bj-omssonALT 15068. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnord  |-  ( A  e.  om  ->  Ord  A )

Proof of Theorem bj-nnord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans2 15057 . 2  |-  ( A  e.  om  ->  Tr  A )
2 bj-omtrans 15061 . . . . . 6  |-  ( A  e.  om  ->  A  C_ 
om )
32sseld 3166 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
4 bj-nntrans2 15057 . . . . 5  |-  ( x  e.  om  ->  Tr  x )
53, 4syl6 33 . . . 4  |-  ( A  e.  om  ->  (
x  e.  A  ->  Tr  x ) )
65alrimiv 1884 . . 3  |-  ( A  e.  om  ->  A. x
( x  e.  A  ->  Tr  x ) )
7 df-ral 2470 . . 3  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
86, 7sylibr 134 . 2  |-  ( A  e.  om  ->  A. x  e.  A  Tr  x
)
9 dford3 4379 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
101, 8, 9sylanbrc 417 1  |-  ( A  e.  om  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1361    e. wcel 2158   A.wral 2465   Tr wtr 4113   Ord word 4374   omcom 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-nul 4141  ax-pr 4221  ax-un 4445  ax-bd0 14918  ax-bdor 14921  ax-bdal 14923  ax-bdex 14924  ax-bdeq 14925  ax-bdel 14926  ax-bdsb 14927  ax-bdsep 14989  ax-infvn 15046
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-tr 4114  df-iord 4378  df-suc 4383  df-iom 4602  df-bdc 14946  df-bj-ind 15032
This theorem is referenced by:  bj-nnelon  15064
  Copyright terms: Public domain W3C validator