Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnord Unicode version

Theorem bj-nnord 15604
Description: A natural number is an ordinal class. Constructive proof of nnord 4648. Can also be proved from bj-nnelon 15605 if the latter is proved from bj-omssonALT 15609. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnord  |-  ( A  e.  om  ->  Ord  A )

Proof of Theorem bj-nnord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans2 15598 . 2  |-  ( A  e.  om  ->  Tr  A )
2 bj-omtrans 15602 . . . . . 6  |-  ( A  e.  om  ->  A  C_ 
om )
32sseld 3182 . . . . 5  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  e.  om )
)
4 bj-nntrans2 15598 . . . . 5  |-  ( x  e.  om  ->  Tr  x )
53, 4syl6 33 . . . 4  |-  ( A  e.  om  ->  (
x  e.  A  ->  Tr  x ) )
65alrimiv 1888 . . 3  |-  ( A  e.  om  ->  A. x
( x  e.  A  ->  Tr  x ) )
7 df-ral 2480 . . 3  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
86, 7sylibr 134 . 2  |-  ( A  e.  om  ->  A. x  e.  A  Tr  x
)
9 dford3 4402 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
101, 8, 9sylanbrc 417 1  |-  ( A  e.  om  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    e. wcel 2167   A.wral 2475   Tr wtr 4131   Ord word 4397   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdal 15464  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530  ax-infvn 15587
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-suc 4406  df-iom 4627  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-nnelon  15605
  Copyright terms: Public domain W3C validator