Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans2 GIF version

Theorem bj-nntrans2 15850
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans2 (𝐴 ∈ ω → Tr 𝐴)

Proof of Theorem bj-nntrans2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans 15849 . . 3 (𝐴 ∈ ω → (𝑥𝐴𝑥𝐴))
21ralrimiv 2577 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
3 dftr3 4145 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
42, 3sylibr 134 1 (𝐴 ∈ ω → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wral 2483  wss 3165  Tr wtr 4141  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4479  ax-bd0 15711  ax-bdor 15714  ax-bdal 15716  ax-bdex 15717  ax-bdeq 15718  ax-bdel 15719  ax-bdsb 15720  ax-bdsep 15782  ax-infvn 15839
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-suc 4417  df-iom 4638  df-bdc 15739  df-bj-ind 15825
This theorem is referenced by:  bj-nnord  15856  bj-omord  15858
  Copyright terms: Public domain W3C validator