Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans2 GIF version

Theorem bj-nntrans2 16273
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans2 (𝐴 ∈ ω → Tr 𝐴)

Proof of Theorem bj-nntrans2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans 16272 . . 3 (𝐴 ∈ ω → (𝑥𝐴𝑥𝐴))
21ralrimiv 2602 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 𝑥𝐴)
3 dftr3 4185 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
42, 3sylibr 134 1 (𝐴 ∈ ω → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wral 2508  wss 3197  Tr wtr 4181  ωcom 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4209  ax-pr 4292  ax-un 4523  ax-bd0 16134  ax-bdor 16137  ax-bdal 16139  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143  ax-bdsep 16205  ax-infvn 16262
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-suc 4461  df-iom 4682  df-bdc 16162  df-bj-ind 16248
This theorem is referenced by:  bj-nnord  16279  bj-omord  16281
  Copyright terms: Public domain W3C validator