| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans2 | GIF version | ||
| Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nntrans2 | ⊢ (𝐴 ∈ ω → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nntrans 15849 | . . 3 ⊢ (𝐴 ∈ ω → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 2 | 1 | ralrimiv 2577 | . 2 ⊢ (𝐴 ∈ ω → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
| 3 | dftr3 4145 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝐴 ∈ ω → Tr 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 Tr wtr 4141 ωcom 4637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-nul 4169 ax-pr 4252 ax-un 4479 ax-bd0 15711 ax-bdor 15714 ax-bdal 15716 ax-bdex 15717 ax-bdeq 15718 ax-bdel 15719 ax-bdsb 15720 ax-bdsep 15782 ax-infvn 15839 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-tr 4142 df-suc 4417 df-iom 4638 df-bdc 15739 df-bj-ind 15825 |
| This theorem is referenced by: bj-nnord 15856 bj-omord 15858 |
| Copyright terms: Public domain | W3C validator |