Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omord Unicode version

Theorem bj-omord 14852
Description: The set  om is an ordinal class. Constructive proof of ordom 4608. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omord  |-  Ord  om

Proof of Theorem bj-omord
StepHypRef Expression
1 bj-omtrans2 14849 . 2  |-  Tr  om
2 bj-nntrans2 14844 . . 3  |-  ( x  e.  om  ->  Tr  x )
32rgen 2530 . 2  |-  A. x  e.  om  Tr  x
4 dford3 4369 . 2  |-  ( Ord 
om 
<->  ( Tr  om  /\  A. x  e.  om  Tr  x ) )
51, 3, 4mpbir2an 942 1  |-  Ord  om
Colors of variables: wff set class
Syntax hints:   A.wral 2455   Tr wtr 4103   Ord word 4364   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14705  ax-bdor 14708  ax-bdal 14710  ax-bdex 14711  ax-bdeq 14712  ax-bdel 14713  ax-bdsb 14714  ax-bdsep 14776  ax-infvn 14833
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-suc 4373  df-iom 4592  df-bdc 14733  df-bj-ind 14819
This theorem is referenced by:  bj-omelon  14853
  Copyright terms: Public domain W3C validator