Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omelon GIF version

Theorem bj-omelon 15166
Description: The set ω is an ordinal. Constructive proof of omelon 4626. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-omelon ω ∈ On

Proof of Theorem bj-omelon
StepHypRef Expression
1 bj-omord 15165 . 2 Ord ω
2 bj-omex 15147 . . 3 ω ∈ V
32elon 4392 . 2 (ω ∈ On ↔ Ord ω)
41, 3mpbir 146 1 ω ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2160  Ord word 4380  Oncon0 4381  ωcom 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4144  ax-pr 4227  ax-un 4451  ax-bd0 15018  ax-bdor 15021  ax-bdal 15023  ax-bdex 15024  ax-bdeq 15025  ax-bdel 15026  ax-bdsb 15027  ax-bdsep 15089  ax-infvn 15146
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-tr 4117  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-bdc 15046  df-bj-ind 15132
This theorem is referenced by:  bj-omssonALT  15168
  Copyright terms: Public domain W3C validator