| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omelon | GIF version | ||
| Description: The set ω is an ordinal. Constructive proof of omelon 4662. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omord 16010 | . 2 ⊢ Ord ω | |
| 2 | bj-omex 15992 | . . 3 ⊢ ω ∈ V | |
| 3 | 2 | elon 4426 | . 2 ⊢ (ω ∈ On ↔ Ord ω) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ω ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Ord word 4414 Oncon0 4415 ωcom 4643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4175 ax-pr 4258 ax-un 4485 ax-bd0 15863 ax-bdor 15866 ax-bdal 15868 ax-bdex 15869 ax-bdeq 15870 ax-bdel 15871 ax-bdsb 15872 ax-bdsep 15934 ax-infvn 15991 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-bdc 15891 df-bj-ind 15977 |
| This theorem is referenced by: bj-omssonALT 16013 |
| Copyright terms: Public domain | W3C validator |