ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab2ga Unicode version

Theorem brab2ga 4751
Description: The law of concretion for a binary relation. See brab2a 4729 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
brab2ga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brab2ga.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
Assertion
Ref Expression
brab2ga  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)

Proof of Theorem brab2ga
StepHypRef Expression
1 brab2ga.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
2 opabssxp 4750 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } 
C_  ( C  X.  D )
31, 2eqsstri 3225 . . 3  |-  R  C_  ( C  X.  D
)
43brel 4728 . 2  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
5 df-br 4046 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
61eleq2i 2272 . . . 4  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
75, 6bitri 184 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
8 brab2ga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
98opelopab2a 4312 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
107, 9bitrid 192 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ps ) )
114, 10biadan2 456 1  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4045   {copab 4105    X. cxp 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682
This theorem is referenced by:  reapval  8651  ltxr  9899
  Copyright terms: Public domain W3C validator