Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapval | Unicode version |
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8507 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
reapval | #ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3994 | . . . 4 | |
2 | simpr 109 | . . . . 5 | |
3 | simpl 108 | . . . . 5 | |
4 | 2, 3 | breq12d 4002 | . . . 4 |
5 | 1, 4 | orbi12d 788 | . . 3 |
6 | df-reap 8494 | . . 3 #ℝ | |
7 | 5, 6 | brab2ga 4686 | . 2 #ℝ |
8 | 7 | baib 914 | 1 #ℝ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 class class class wbr 3989 cr 7773 clt 7954 #ℝ creap 8493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-reap 8494 |
This theorem is referenced by: reapirr 8496 recexre 8497 reapti 8498 reaplt 8507 |
Copyright terms: Public domain | W3C validator |