ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapval Unicode version

Theorem reapval 8649
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8661 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
reapval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )

Proof of Theorem reapval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4049 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <  y  <->  A  <  B ) )
2 simpr 110 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
3 simpl 109 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
42, 3breq12d 4057 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  <  x  <->  B  <  A ) )
51, 4orbi12d 795 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  < 
y  \/  y  < 
x )  <->  ( A  <  B  \/  B  < 
A ) ) )
6 df-reap 8648 . . 3  |- #  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  < 
y  \/  y  < 
x ) ) }
75, 6brab2ga 4750 . 2  |-  ( A #  B  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <  B  \/  B  <  A ) ) )
87baib 921 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044   RRcr 7924    < clt 8107   # creap 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-reap 8648
This theorem is referenced by:  reapirr  8650  recexre  8651  reapti  8652  reaplt  8661
  Copyright terms: Public domain W3C validator