Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapval | Unicode version |
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8464 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
reapval | #ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3971 | . . . 4 | |
2 | simpr 109 | . . . . 5 | |
3 | simpl 108 | . . . . 5 | |
4 | 2, 3 | breq12d 3979 | . . . 4 |
5 | 1, 4 | orbi12d 783 | . . 3 |
6 | df-reap 8451 | . . 3 #ℝ | |
7 | 5, 6 | brab2ga 4662 | . 2 #ℝ |
8 | 7 | baib 905 | 1 #ℝ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1335 wcel 2128 class class class wbr 3966 cr 7732 clt 7913 #ℝ creap 8450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3967 df-opab 4027 df-xp 4593 df-reap 8451 |
This theorem is referenced by: reapirr 8453 recexre 8454 reapti 8455 reaplt 8464 |
Copyright terms: Public domain | W3C validator |