ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapval Unicode version

Theorem reapval 8474
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8486 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
reapval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )

Proof of Theorem reapval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 3987 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <  y  <->  A  <  B ) )
2 simpr 109 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
3 simpl 108 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
42, 3breq12d 3995 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  <  x  <->  B  <  A ) )
51, 4orbi12d 783 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  < 
y  \/  y  < 
x )  <->  ( A  <  B  \/  B  < 
A ) ) )
6 df-reap 8473 . . 3  |- #  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  < 
y  \/  y  < 
x ) ) }
75, 6brab2ga 4679 . 2  |-  ( A #  B  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <  B  \/  B  <  A ) ) )
87baib 909 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982   RRcr 7752    < clt 7933   # creap 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-reap 8473
This theorem is referenced by:  reapirr  8475  recexre  8476  reapti  8477  reaplt  8486
  Copyright terms: Public domain W3C validator