ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapval Unicode version

Theorem reapval 8595
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8607 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
Assertion
Ref Expression
reapval  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )

Proof of Theorem reapval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4034 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  <  y  <->  A  <  B ) )
2 simpr 110 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
3 simpl 109 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
42, 3breq12d 4042 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( y  <  x  <->  B  <  A ) )
51, 4orbi12d 794 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  < 
y  \/  y  < 
x )  <->  ( A  <  B  \/  B  < 
A ) ) )
6 df-reap 8594 . . 3  |- #  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  < 
y  \/  y  < 
x ) ) }
75, 6brab2ga 4734 . 2  |-  ( A #  B  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <  B  \/  B  <  A ) ) )
87baib 920 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4029   RRcr 7871    < clt 8054   # creap 8593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-reap 8594
This theorem is referenced by:  reapirr  8596  recexre  8597  reapti  8598  reaplt  8607
  Copyright terms: Public domain W3C validator