Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapval | Unicode version |
Description: Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8486 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
Ref | Expression |
---|---|
reapval | #ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 3987 | . . . 4 | |
2 | simpr 109 | . . . . 5 | |
3 | simpl 108 | . . . . 5 | |
4 | 2, 3 | breq12d 3995 | . . . 4 |
5 | 1, 4 | orbi12d 783 | . . 3 |
6 | df-reap 8473 | . . 3 #ℝ | |
7 | 5, 6 | brab2ga 4679 | . 2 #ℝ |
8 | 7 | baib 909 | 1 #ℝ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 clt 7933 #ℝ creap 8472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-reap 8473 |
This theorem is referenced by: reapirr 8475 recexre 8476 reapti 8477 reaplt 8486 |
Copyright terms: Public domain | W3C validator |