ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov411d Unicode version

Theorem caov411d 5956
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
caovd.4  |-  ( ph  ->  D  e.  S )
caovd.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
Assertion
Ref Expression
caov411d  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( C F B ) F ( A F D ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov411d
StepHypRef Expression
1 caovd.2 . . 3  |-  ( ph  ->  B  e.  S )
2 caovd.1 . . 3  |-  ( ph  ->  A  e.  S )
3 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
4 caovd.com . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
5 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
6 caovd.4 . . 3  |-  ( ph  ->  D  e.  S )
7 caovd.cl . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
81, 2, 3, 4, 5, 6, 7caov4d 5955 . 2  |-  ( ph  ->  ( ( B F A ) F ( C F D ) )  =  ( ( B F C ) F ( A F D ) ) )
94, 1, 2caovcomd 5927 . . 3  |-  ( ph  ->  ( B F A )  =  ( A F B ) )
109oveq1d 5789 . 2  |-  ( ph  ->  ( ( B F A ) F ( C F D ) )  =  ( ( A F B ) F ( C F D ) ) )
114, 1, 3caovcomd 5927 . . 3  |-  ( ph  ->  ( B F C )  =  ( C F B ) )
1211oveq1d 5789 . 2  |-  ( ph  ->  ( ( B F C ) F ( A F D ) )  =  ( ( C F B ) F ( A F D ) ) )
138, 10, 123eqtr3d 2180 1  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( C F B ) F ( A F D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  ecopovtrn  6526  ecopovtrng  6529  ltsonq  7213  ltanqg  7215  mulextsr1lem  7595
  Copyright terms: Public domain W3C validator