| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulextsr1lem | Unicode version | ||
| Description: Lemma for mulextsr1 7865. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulextsr1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcomprg 7662 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | addclpr 7621 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | simp2l 1025 |
. . . . . . . 8
| |
| 6 | simp3r 1028 |
. . . . . . . 8
| |
| 7 | mulclpr 7656 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | simp1r 1024 |
. . . . . . . 8
| |
| 10 | mulclpr 7656 |
. . . . . . . 8
| |
| 11 | 9, 6, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 4, 8, 11 | caovcld 6081 |
. . . . . 6
|
| 13 | simp1l 1023 |
. . . . . . . 8
| |
| 14 | simp3l 1027 |
. . . . . . . 8
| |
| 15 | mulclpr 7656 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp2r 1026 |
. . . . . . . 8
| |
| 18 | mulclpr 7656 |
. . . . . . . 8
| |
| 19 | 17, 14, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 4, 16, 19 | caovcld 6081 |
. . . . . 6
|
| 21 | 2, 12, 20 | caovcomd 6084 |
. . . . 5
|
| 22 | addassprg 7663 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 16, 11, 8, 2, 23, 19, 4 | caov411d 6113 |
. . . . 5
|
| 25 | distrprg 7672 |
. . . . . . . 8
| |
| 26 | 25 | adantl 277 |
. . . . . . 7
|
| 27 | mulcomprg 7664 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 26, 13, 17, 14, 4, 28 | caovdir2d 6104 |
. . . . . 6
|
| 30 | 26, 5, 9, 6, 4, 28 | caovdir2d 6104 |
. . . . . 6
|
| 31 | 29, 30 | oveq12d 5943 |
. . . . 5
|
| 32 | 21, 24, 31 | 3eqtr4d 2239 |
. . . 4
|
| 33 | mulclpr 7656 |
. . . . . . 7
| |
| 34 | 13, 6, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | mulclpr 7656 |
. . . . . . 7
| |
| 36 | 9, 14, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | mulclpr 7656 |
. . . . . . 7
| |
| 38 | 5, 14, 37 | syl2anc 411 |
. . . . . 6
|
| 39 | mulclpr 7656 |
. . . . . . 7
| |
| 40 | 17, 6, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 34, 36, 38, 2, 23, 40, 4 | caov411d 6113 |
. . . . 5
|
| 42 | 26, 5, 9, 14, 4, 28 | caovdir2d 6104 |
. . . . . 6
|
| 43 | 26, 13, 17, 6, 4, 28 | caovdir2d 6104 |
. . . . . 6
|
| 44 | 42, 43 | oveq12d 5943 |
. . . . 5
|
| 45 | 41, 44 | eqtr4d 2232 |
. . . 4
|
| 46 | 32, 45 | breq12d 4047 |
. . 3
|
| 47 | 29, 20 | eqeltrd 2273 |
. . . . 5
|
| 48 | 30, 12 | eqeltrd 2273 |
. . . . 5
|
| 49 | addclpr 7621 |
. . . . . . 7
| |
| 50 | 5, 9, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | mulclpr 7656 |
. . . . . 6
| |
| 52 | 50, 14, 51 | syl2anc 411 |
. . . . 5
|
| 53 | addclpr 7621 |
. . . . . . 7
| |
| 54 | 13, 17, 53 | syl2anc 411 |
. . . . . 6
|
| 55 | mulclpr 7656 |
. . . . . 6
| |
| 56 | 54, 6, 55 | syl2anc 411 |
. . . . 5
|
| 57 | addextpr 7705 |
. . . . 5
| |
| 58 | 47, 48, 52, 56, 57 | syl22anc 1250 |
. . . 4
|
| 59 | mulcomprg 7664 |
. . . . . . . . 9
| |
| 60 | 59 | 3adant2 1018 |
. . . . . . . 8
|
| 61 | mulcomprg 7664 |
. . . . . . . . 9
| |
| 62 | 61 | 3adant1 1017 |
. . . . . . . 8
|
| 63 | 60, 62 | breq12d 4047 |
. . . . . . 7
|
| 64 | ltmprr 7726 |
. . . . . . 7
| |
| 65 | 63, 64 | sylbid 150 |
. . . . . 6
|
| 66 | 54, 50, 14, 65 | syl3anc 1249 |
. . . . 5
|
| 67 | mulcomprg 7664 |
. . . . . . . 8
| |
| 68 | 50, 6, 67 | syl2anc 411 |
. . . . . . 7
|
| 69 | mulcomprg 7664 |
. . . . . . . 8
| |
| 70 | 54, 6, 69 | syl2anc 411 |
. . . . . . 7
|
| 71 | 68, 70 | breq12d 4047 |
. . . . . 6
|
| 72 | ltmprr 7726 |
. . . . . . 7
| |
| 73 | 50, 54, 6, 72 | syl3anc 1249 |
. . . . . 6
|
| 74 | 71, 73 | sylbid 150 |
. . . . 5
|
| 75 | 66, 74 | orim12d 787 |
. . . 4
|
| 76 | 58, 75 | syld 45 |
. . 3
|
| 77 | 46, 76 | sylbid 150 |
. 2
|
| 78 | addcomprg 7662 |
. . . . 5
| |
| 79 | 5, 9, 78 | syl2anc 411 |
. . . 4
|
| 80 | 79 | breq2d 4046 |
. . 3
|
| 81 | addcomprg 7662 |
. . . . 5
| |
| 82 | 13, 17, 81 | syl2anc 411 |
. . . 4
|
| 83 | 82 | breq2d 4046 |
. . 3
|
| 84 | 80, 83 | orbi12d 794 |
. 2
|
| 85 | 77, 84 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-iltp 7554 |
| This theorem is referenced by: mulextsr1 7865 |
| Copyright terms: Public domain | W3C validator |