Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulextsr1lem | Unicode version |
Description: Lemma for mulextsr1 7722. (Contributed by Jim Kingdon, 17-Feb-2020.) |
Ref | Expression |
---|---|
mulextsr1lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcomprg 7519 | . . . . . . 7 | |
2 | 1 | adantl 275 | . . . . . 6 |
3 | addclpr 7478 | . . . . . . . 8 | |
4 | 3 | adantl 275 | . . . . . . 7 |
5 | simp2l 1013 | . . . . . . . 8 | |
6 | simp3r 1016 | . . . . . . . 8 | |
7 | mulclpr 7513 | . . . . . . . 8 | |
8 | 5, 6, 7 | syl2anc 409 | . . . . . . 7 |
9 | simp1r 1012 | . . . . . . . 8 | |
10 | mulclpr 7513 | . . . . . . . 8 | |
11 | 9, 6, 10 | syl2anc 409 | . . . . . . 7 |
12 | 4, 8, 11 | caovcld 5995 | . . . . . 6 |
13 | simp1l 1011 | . . . . . . . 8 | |
14 | simp3l 1015 | . . . . . . . 8 | |
15 | mulclpr 7513 | . . . . . . . 8 | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . 7 |
17 | simp2r 1014 | . . . . . . . 8 | |
18 | mulclpr 7513 | . . . . . . . 8 | |
19 | 17, 14, 18 | syl2anc 409 | . . . . . . 7 |
20 | 4, 16, 19 | caovcld 5995 | . . . . . 6 |
21 | 2, 12, 20 | caovcomd 5998 | . . . . 5 |
22 | addassprg 7520 | . . . . . . 7 | |
23 | 22 | adantl 275 | . . . . . 6 |
24 | 16, 11, 8, 2, 23, 19, 4 | caov411d 6027 | . . . . 5 |
25 | distrprg 7529 | . . . . . . . 8 | |
26 | 25 | adantl 275 | . . . . . . 7 |
27 | mulcomprg 7521 | . . . . . . . 8 | |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 26, 13, 17, 14, 4, 28 | caovdir2d 6018 | . . . . . 6 |
30 | 26, 5, 9, 6, 4, 28 | caovdir2d 6018 | . . . . . 6 |
31 | 29, 30 | oveq12d 5860 | . . . . 5 |
32 | 21, 24, 31 | 3eqtr4d 2208 | . . . 4 |
33 | mulclpr 7513 | . . . . . . 7 | |
34 | 13, 6, 33 | syl2anc 409 | . . . . . 6 |
35 | mulclpr 7513 | . . . . . . 7 | |
36 | 9, 14, 35 | syl2anc 409 | . . . . . 6 |
37 | mulclpr 7513 | . . . . . . 7 | |
38 | 5, 14, 37 | syl2anc 409 | . . . . . 6 |
39 | mulclpr 7513 | . . . . . . 7 | |
40 | 17, 6, 39 | syl2anc 409 | . . . . . 6 |
41 | 34, 36, 38, 2, 23, 40, 4 | caov411d 6027 | . . . . 5 |
42 | 26, 5, 9, 14, 4, 28 | caovdir2d 6018 | . . . . . 6 |
43 | 26, 13, 17, 6, 4, 28 | caovdir2d 6018 | . . . . . 6 |
44 | 42, 43 | oveq12d 5860 | . . . . 5 |
45 | 41, 44 | eqtr4d 2201 | . . . 4 |
46 | 32, 45 | breq12d 3995 | . . 3 |
47 | 29, 20 | eqeltrd 2243 | . . . . 5 |
48 | 30, 12 | eqeltrd 2243 | . . . . 5 |
49 | addclpr 7478 | . . . . . . 7 | |
50 | 5, 9, 49 | syl2anc 409 | . . . . . 6 |
51 | mulclpr 7513 | . . . . . 6 | |
52 | 50, 14, 51 | syl2anc 409 | . . . . 5 |
53 | addclpr 7478 | . . . . . . 7 | |
54 | 13, 17, 53 | syl2anc 409 | . . . . . 6 |
55 | mulclpr 7513 | . . . . . 6 | |
56 | 54, 6, 55 | syl2anc 409 | . . . . 5 |
57 | addextpr 7562 | . . . . 5 | |
58 | 47, 48, 52, 56, 57 | syl22anc 1229 | . . . 4 |
59 | mulcomprg 7521 | . . . . . . . . 9 | |
60 | 59 | 3adant2 1006 | . . . . . . . 8 |
61 | mulcomprg 7521 | . . . . . . . . 9 | |
62 | 61 | 3adant1 1005 | . . . . . . . 8 |
63 | 60, 62 | breq12d 3995 | . . . . . . 7 |
64 | ltmprr 7583 | . . . . . . 7 | |
65 | 63, 64 | sylbid 149 | . . . . . 6 |
66 | 54, 50, 14, 65 | syl3anc 1228 | . . . . 5 |
67 | mulcomprg 7521 | . . . . . . . 8 | |
68 | 50, 6, 67 | syl2anc 409 | . . . . . . 7 |
69 | mulcomprg 7521 | . . . . . . . 8 | |
70 | 54, 6, 69 | syl2anc 409 | . . . . . . 7 |
71 | 68, 70 | breq12d 3995 | . . . . . 6 |
72 | ltmprr 7583 | . . . . . . 7 | |
73 | 50, 54, 6, 72 | syl3anc 1228 | . . . . . 6 |
74 | 71, 73 | sylbid 149 | . . . . 5 |
75 | 66, 74 | orim12d 776 | . . . 4 |
76 | 58, 75 | syld 45 | . . 3 |
77 | 46, 76 | sylbid 149 | . 2 |
78 | addcomprg 7519 | . . . . 5 | |
79 | 5, 9, 78 | syl2anc 409 | . . . 4 |
80 | 79 | breq2d 3994 | . . 3 |
81 | addcomprg 7519 | . . . . 5 | |
82 | 13, 17, 81 | syl2anc 409 | . . . 4 |
83 | 82 | breq2d 3994 | . . 3 |
84 | 80, 83 | orbi12d 783 | . 2 |
85 | 77, 84 | sylibd 148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cnp 7232 cpp 7234 cmp 7235 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-iltp 7411 |
This theorem is referenced by: mulextsr1 7722 |
Copyright terms: Public domain | W3C validator |