| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulextsr1lem | Unicode version | ||
| Description: Lemma for mulextsr1 7964. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulextsr1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcomprg 7761 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | addclpr 7720 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | simp2l 1047 |
. . . . . . . 8
| |
| 6 | simp3r 1050 |
. . . . . . . 8
| |
| 7 | mulclpr 7755 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | simp1r 1046 |
. . . . . . . 8
| |
| 10 | mulclpr 7755 |
. . . . . . . 8
| |
| 11 | 9, 6, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 4, 8, 11 | caovcld 6158 |
. . . . . 6
|
| 13 | simp1l 1045 |
. . . . . . . 8
| |
| 14 | simp3l 1049 |
. . . . . . . 8
| |
| 15 | mulclpr 7755 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp2r 1048 |
. . . . . . . 8
| |
| 18 | mulclpr 7755 |
. . . . . . . 8
| |
| 19 | 17, 14, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 4, 16, 19 | caovcld 6158 |
. . . . . 6
|
| 21 | 2, 12, 20 | caovcomd 6161 |
. . . . 5
|
| 22 | addassprg 7762 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 16, 11, 8, 2, 23, 19, 4 | caov411d 6190 |
. . . . 5
|
| 25 | distrprg 7771 |
. . . . . . . 8
| |
| 26 | 25 | adantl 277 |
. . . . . . 7
|
| 27 | mulcomprg 7763 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 26, 13, 17, 14, 4, 28 | caovdir2d 6181 |
. . . . . 6
|
| 30 | 26, 5, 9, 6, 4, 28 | caovdir2d 6181 |
. . . . . 6
|
| 31 | 29, 30 | oveq12d 6018 |
. . . . 5
|
| 32 | 21, 24, 31 | 3eqtr4d 2272 |
. . . 4
|
| 33 | mulclpr 7755 |
. . . . . . 7
| |
| 34 | 13, 6, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | mulclpr 7755 |
. . . . . . 7
| |
| 36 | 9, 14, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | mulclpr 7755 |
. . . . . . 7
| |
| 38 | 5, 14, 37 | syl2anc 411 |
. . . . . 6
|
| 39 | mulclpr 7755 |
. . . . . . 7
| |
| 40 | 17, 6, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 34, 36, 38, 2, 23, 40, 4 | caov411d 6190 |
. . . . 5
|
| 42 | 26, 5, 9, 14, 4, 28 | caovdir2d 6181 |
. . . . . 6
|
| 43 | 26, 13, 17, 6, 4, 28 | caovdir2d 6181 |
. . . . . 6
|
| 44 | 42, 43 | oveq12d 6018 |
. . . . 5
|
| 45 | 41, 44 | eqtr4d 2265 |
. . . 4
|
| 46 | 32, 45 | breq12d 4095 |
. . 3
|
| 47 | 29, 20 | eqeltrd 2306 |
. . . . 5
|
| 48 | 30, 12 | eqeltrd 2306 |
. . . . 5
|
| 49 | addclpr 7720 |
. . . . . . 7
| |
| 50 | 5, 9, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | mulclpr 7755 |
. . . . . 6
| |
| 52 | 50, 14, 51 | syl2anc 411 |
. . . . 5
|
| 53 | addclpr 7720 |
. . . . . . 7
| |
| 54 | 13, 17, 53 | syl2anc 411 |
. . . . . 6
|
| 55 | mulclpr 7755 |
. . . . . 6
| |
| 56 | 54, 6, 55 | syl2anc 411 |
. . . . 5
|
| 57 | addextpr 7804 |
. . . . 5
| |
| 58 | 47, 48, 52, 56, 57 | syl22anc 1272 |
. . . 4
|
| 59 | mulcomprg 7763 |
. . . . . . . . 9
| |
| 60 | 59 | 3adant2 1040 |
. . . . . . . 8
|
| 61 | mulcomprg 7763 |
. . . . . . . . 9
| |
| 62 | 61 | 3adant1 1039 |
. . . . . . . 8
|
| 63 | 60, 62 | breq12d 4095 |
. . . . . . 7
|
| 64 | ltmprr 7825 |
. . . . . . 7
| |
| 65 | 63, 64 | sylbid 150 |
. . . . . 6
|
| 66 | 54, 50, 14, 65 | syl3anc 1271 |
. . . . 5
|
| 67 | mulcomprg 7763 |
. . . . . . . 8
| |
| 68 | 50, 6, 67 | syl2anc 411 |
. . . . . . 7
|
| 69 | mulcomprg 7763 |
. . . . . . . 8
| |
| 70 | 54, 6, 69 | syl2anc 411 |
. . . . . . 7
|
| 71 | 68, 70 | breq12d 4095 |
. . . . . 6
|
| 72 | ltmprr 7825 |
. . . . . . 7
| |
| 73 | 50, 54, 6, 72 | syl3anc 1271 |
. . . . . 6
|
| 74 | 71, 73 | sylbid 150 |
. . . . 5
|
| 75 | 66, 74 | orim12d 791 |
. . . 4
|
| 76 | 58, 75 | syld 45 |
. . 3
|
| 77 | 46, 76 | sylbid 150 |
. 2
|
| 78 | addcomprg 7761 |
. . . . 5
| |
| 79 | 5, 9, 78 | syl2anc 411 |
. . . 4
|
| 80 | 79 | breq2d 4094 |
. . 3
|
| 81 | addcomprg 7761 |
. . . . 5
| |
| 82 | 13, 17, 81 | syl2anc 411 |
. . . 4
|
| 83 | 82 | breq2d 4094 |
. . 3
|
| 84 | 80, 83 | orbi12d 798 |
. 2
|
| 85 | 77, 84 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-imp 7652 df-iltp 7653 |
| This theorem is referenced by: mulextsr1 7964 |
| Copyright terms: Public domain | W3C validator |