Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulextsr1lem | Unicode version |
Description: Lemma for mulextsr1 7743. (Contributed by Jim Kingdon, 17-Feb-2020.) |
Ref | Expression |
---|---|
mulextsr1lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcomprg 7540 | . . . . . . 7 | |
2 | 1 | adantl 275 | . . . . . 6 |
3 | addclpr 7499 | . . . . . . . 8 | |
4 | 3 | adantl 275 | . . . . . . 7 |
5 | simp2l 1018 | . . . . . . . 8 | |
6 | simp3r 1021 | . . . . . . . 8 | |
7 | mulclpr 7534 | . . . . . . . 8 | |
8 | 5, 6, 7 | syl2anc 409 | . . . . . . 7 |
9 | simp1r 1017 | . . . . . . . 8 | |
10 | mulclpr 7534 | . . . . . . . 8 | |
11 | 9, 6, 10 | syl2anc 409 | . . . . . . 7 |
12 | 4, 8, 11 | caovcld 6006 | . . . . . 6 |
13 | simp1l 1016 | . . . . . . . 8 | |
14 | simp3l 1020 | . . . . . . . 8 | |
15 | mulclpr 7534 | . . . . . . . 8 | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . 7 |
17 | simp2r 1019 | . . . . . . . 8 | |
18 | mulclpr 7534 | . . . . . . . 8 | |
19 | 17, 14, 18 | syl2anc 409 | . . . . . . 7 |
20 | 4, 16, 19 | caovcld 6006 | . . . . . 6 |
21 | 2, 12, 20 | caovcomd 6009 | . . . . 5 |
22 | addassprg 7541 | . . . . . . 7 | |
23 | 22 | adantl 275 | . . . . . 6 |
24 | 16, 11, 8, 2, 23, 19, 4 | caov411d 6038 | . . . . 5 |
25 | distrprg 7550 | . . . . . . . 8 | |
26 | 25 | adantl 275 | . . . . . . 7 |
27 | mulcomprg 7542 | . . . . . . . 8 | |
28 | 27 | adantl 275 | . . . . . . 7 |
29 | 26, 13, 17, 14, 4, 28 | caovdir2d 6029 | . . . . . 6 |
30 | 26, 5, 9, 6, 4, 28 | caovdir2d 6029 | . . . . . 6 |
31 | 29, 30 | oveq12d 5871 | . . . . 5 |
32 | 21, 24, 31 | 3eqtr4d 2213 | . . . 4 |
33 | mulclpr 7534 | . . . . . . 7 | |
34 | 13, 6, 33 | syl2anc 409 | . . . . . 6 |
35 | mulclpr 7534 | . . . . . . 7 | |
36 | 9, 14, 35 | syl2anc 409 | . . . . . 6 |
37 | mulclpr 7534 | . . . . . . 7 | |
38 | 5, 14, 37 | syl2anc 409 | . . . . . 6 |
39 | mulclpr 7534 | . . . . . . 7 | |
40 | 17, 6, 39 | syl2anc 409 | . . . . . 6 |
41 | 34, 36, 38, 2, 23, 40, 4 | caov411d 6038 | . . . . 5 |
42 | 26, 5, 9, 14, 4, 28 | caovdir2d 6029 | . . . . . 6 |
43 | 26, 13, 17, 6, 4, 28 | caovdir2d 6029 | . . . . . 6 |
44 | 42, 43 | oveq12d 5871 | . . . . 5 |
45 | 41, 44 | eqtr4d 2206 | . . . 4 |
46 | 32, 45 | breq12d 4002 | . . 3 |
47 | 29, 20 | eqeltrd 2247 | . . . . 5 |
48 | 30, 12 | eqeltrd 2247 | . . . . 5 |
49 | addclpr 7499 | . . . . . . 7 | |
50 | 5, 9, 49 | syl2anc 409 | . . . . . 6 |
51 | mulclpr 7534 | . . . . . 6 | |
52 | 50, 14, 51 | syl2anc 409 | . . . . 5 |
53 | addclpr 7499 | . . . . . . 7 | |
54 | 13, 17, 53 | syl2anc 409 | . . . . . 6 |
55 | mulclpr 7534 | . . . . . 6 | |
56 | 54, 6, 55 | syl2anc 409 | . . . . 5 |
57 | addextpr 7583 | . . . . 5 | |
58 | 47, 48, 52, 56, 57 | syl22anc 1234 | . . . 4 |
59 | mulcomprg 7542 | . . . . . . . . 9 | |
60 | 59 | 3adant2 1011 | . . . . . . . 8 |
61 | mulcomprg 7542 | . . . . . . . . 9 | |
62 | 61 | 3adant1 1010 | . . . . . . . 8 |
63 | 60, 62 | breq12d 4002 | . . . . . . 7 |
64 | ltmprr 7604 | . . . . . . 7 | |
65 | 63, 64 | sylbid 149 | . . . . . 6 |
66 | 54, 50, 14, 65 | syl3anc 1233 | . . . . 5 |
67 | mulcomprg 7542 | . . . . . . . 8 | |
68 | 50, 6, 67 | syl2anc 409 | . . . . . . 7 |
69 | mulcomprg 7542 | . . . . . . . 8 | |
70 | 54, 6, 69 | syl2anc 409 | . . . . . . 7 |
71 | 68, 70 | breq12d 4002 | . . . . . 6 |
72 | ltmprr 7604 | . . . . . . 7 | |
73 | 50, 54, 6, 72 | syl3anc 1233 | . . . . . 6 |
74 | 71, 73 | sylbid 149 | . . . . 5 |
75 | 66, 74 | orim12d 781 | . . . 4 |
76 | 58, 75 | syld 45 | . . 3 |
77 | 46, 76 | sylbid 149 | . 2 |
78 | addcomprg 7540 | . . . . 5 | |
79 | 5, 9, 78 | syl2anc 409 | . . . 4 |
80 | 79 | breq2d 4001 | . . 3 |
81 | addcomprg 7540 | . . . . 5 | |
82 | 13, 17, 81 | syl2anc 409 | . . . 4 |
83 | 82 | breq2d 4001 | . . 3 |
84 | 80, 83 | orbi12d 788 | . 2 |
85 | 77, 84 | sylibd 148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cnp 7253 cpp 7255 cmp 7256 cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-iltp 7432 |
This theorem is referenced by: mulextsr1 7743 |
Copyright terms: Public domain | W3C validator |