| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulextsr1lem | Unicode version | ||
| Description: Lemma for mulextsr1 7914. (Contributed by Jim Kingdon, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulextsr1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcomprg 7711 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | addclpr 7670 |
. . . . . . . 8
| |
| 4 | 3 | adantl 277 |
. . . . . . 7
|
| 5 | simp2l 1026 |
. . . . . . . 8
| |
| 6 | simp3r 1029 |
. . . . . . . 8
| |
| 7 | mulclpr 7705 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | simp1r 1025 |
. . . . . . . 8
| |
| 10 | mulclpr 7705 |
. . . . . . . 8
| |
| 11 | 9, 6, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 4, 8, 11 | caovcld 6113 |
. . . . . 6
|
| 13 | simp1l 1024 |
. . . . . . . 8
| |
| 14 | simp3l 1028 |
. . . . . . . 8
| |
| 15 | mulclpr 7705 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | simp2r 1027 |
. . . . . . . 8
| |
| 18 | mulclpr 7705 |
. . . . . . . 8
| |
| 19 | 17, 14, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 4, 16, 19 | caovcld 6113 |
. . . . . 6
|
| 21 | 2, 12, 20 | caovcomd 6116 |
. . . . 5
|
| 22 | addassprg 7712 |
. . . . . . 7
| |
| 23 | 22 | adantl 277 |
. . . . . 6
|
| 24 | 16, 11, 8, 2, 23, 19, 4 | caov411d 6145 |
. . . . 5
|
| 25 | distrprg 7721 |
. . . . . . . 8
| |
| 26 | 25 | adantl 277 |
. . . . . . 7
|
| 27 | mulcomprg 7713 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 26, 13, 17, 14, 4, 28 | caovdir2d 6136 |
. . . . . 6
|
| 30 | 26, 5, 9, 6, 4, 28 | caovdir2d 6136 |
. . . . . 6
|
| 31 | 29, 30 | oveq12d 5975 |
. . . . 5
|
| 32 | 21, 24, 31 | 3eqtr4d 2249 |
. . . 4
|
| 33 | mulclpr 7705 |
. . . . . . 7
| |
| 34 | 13, 6, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | mulclpr 7705 |
. . . . . . 7
| |
| 36 | 9, 14, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | mulclpr 7705 |
. . . . . . 7
| |
| 38 | 5, 14, 37 | syl2anc 411 |
. . . . . 6
|
| 39 | mulclpr 7705 |
. . . . . . 7
| |
| 40 | 17, 6, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | 34, 36, 38, 2, 23, 40, 4 | caov411d 6145 |
. . . . 5
|
| 42 | 26, 5, 9, 14, 4, 28 | caovdir2d 6136 |
. . . . . 6
|
| 43 | 26, 13, 17, 6, 4, 28 | caovdir2d 6136 |
. . . . . 6
|
| 44 | 42, 43 | oveq12d 5975 |
. . . . 5
|
| 45 | 41, 44 | eqtr4d 2242 |
. . . 4
|
| 46 | 32, 45 | breq12d 4064 |
. . 3
|
| 47 | 29, 20 | eqeltrd 2283 |
. . . . 5
|
| 48 | 30, 12 | eqeltrd 2283 |
. . . . 5
|
| 49 | addclpr 7670 |
. . . . . . 7
| |
| 50 | 5, 9, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | mulclpr 7705 |
. . . . . 6
| |
| 52 | 50, 14, 51 | syl2anc 411 |
. . . . 5
|
| 53 | addclpr 7670 |
. . . . . . 7
| |
| 54 | 13, 17, 53 | syl2anc 411 |
. . . . . 6
|
| 55 | mulclpr 7705 |
. . . . . 6
| |
| 56 | 54, 6, 55 | syl2anc 411 |
. . . . 5
|
| 57 | addextpr 7754 |
. . . . 5
| |
| 58 | 47, 48, 52, 56, 57 | syl22anc 1251 |
. . . 4
|
| 59 | mulcomprg 7713 |
. . . . . . . . 9
| |
| 60 | 59 | 3adant2 1019 |
. . . . . . . 8
|
| 61 | mulcomprg 7713 |
. . . . . . . . 9
| |
| 62 | 61 | 3adant1 1018 |
. . . . . . . 8
|
| 63 | 60, 62 | breq12d 4064 |
. . . . . . 7
|
| 64 | ltmprr 7775 |
. . . . . . 7
| |
| 65 | 63, 64 | sylbid 150 |
. . . . . 6
|
| 66 | 54, 50, 14, 65 | syl3anc 1250 |
. . . . 5
|
| 67 | mulcomprg 7713 |
. . . . . . . 8
| |
| 68 | 50, 6, 67 | syl2anc 411 |
. . . . . . 7
|
| 69 | mulcomprg 7713 |
. . . . . . . 8
| |
| 70 | 54, 6, 69 | syl2anc 411 |
. . . . . . 7
|
| 71 | 68, 70 | breq12d 4064 |
. . . . . 6
|
| 72 | ltmprr 7775 |
. . . . . . 7
| |
| 73 | 50, 54, 6, 72 | syl3anc 1250 |
. . . . . 6
|
| 74 | 71, 73 | sylbid 150 |
. . . . 5
|
| 75 | 66, 74 | orim12d 788 |
. . . 4
|
| 76 | 58, 75 | syld 45 |
. . 3
|
| 77 | 46, 76 | sylbid 150 |
. 2
|
| 78 | addcomprg 7711 |
. . . . 5
| |
| 79 | 5, 9, 78 | syl2anc 411 |
. . . 4
|
| 80 | 79 | breq2d 4063 |
. . 3
|
| 81 | addcomprg 7711 |
. . . . 5
| |
| 82 | 13, 17, 81 | syl2anc 411 |
. . . 4
|
| 83 | 82 | breq2d 4063 |
. . 3
|
| 84 | 80, 83 | orbi12d 795 |
. 2
|
| 85 | 77, 84 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-i1p 7600 df-iplp 7601 df-imp 7602 df-iltp 7603 |
| This theorem is referenced by: mulextsr1 7914 |
| Copyright terms: Public domain | W3C validator |