ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1lem Unicode version

Theorem mulextsr1lem 7742
Description: Lemma for mulextsr1 7743. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
mulextsr1lem  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )

Proof of Theorem mulextsr1lem
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcomprg 7540 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
21adantl 275 . . . . . 6  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
3 addclpr 7499 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
43adantl 275 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
5 simp2l 1018 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  Z  e.  P. )
6 simp3r 1021 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  V  e.  P. )
7 mulclpr 7534 . . . . . . . 8  |-  ( ( Z  e.  P.  /\  V  e.  P. )  ->  ( Z  .P.  V
)  e.  P. )
85, 6, 7syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  .P.  V )  e.  P. )
9 simp1r 1017 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  Y  e.  P. )
10 mulclpr 7534 . . . . . . . 8  |-  ( ( Y  e.  P.  /\  V  e.  P. )  ->  ( Y  .P.  V
)  e.  P. )
119, 6, 10syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Y  .P.  V )  e.  P. )
124, 8, 11caovcld 6006 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  .P.  V )  +P.  ( Y  .P.  V
) )  e.  P. )
13 simp1l 1016 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  X  e.  P. )
14 simp3l 1020 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  U  e.  P. )
15 mulclpr 7534 . . . . . . . 8  |-  ( ( X  e.  P.  /\  U  e.  P. )  ->  ( X  .P.  U
)  e.  P. )
1613, 14, 15syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  .P.  U )  e.  P. )
17 simp2r 1019 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  W  e.  P. )
18 mulclpr 7534 . . . . . . . 8  |-  ( ( W  e.  P.  /\  U  e.  P. )  ->  ( W  .P.  U
)  e.  P. )
1917, 14, 18syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( W  .P.  U )  e.  P. )
204, 16, 19caovcld 6006 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  .P.  U )  +P.  ( W  .P.  U
) )  e.  P. )
212, 12, 20caovcomd 6009 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  .P.  V
)  +P.  ( Y  .P.  V ) )  +P.  ( ( X  .P.  U )  +P.  ( W  .P.  U ) ) )  =  ( ( ( X  .P.  U
)  +P.  ( W  .P.  U ) )  +P.  ( ( Z  .P.  V )  +P.  ( Y  .P.  V ) ) ) )
22 addassprg 7541 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
2322adantl 275 . . . . . 6  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
2416, 11, 8, 2, 23, 19, 4caov411d 6038 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  U
)  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  =  ( ( ( Z  .P.  V
)  +P.  ( Y  .P.  V ) )  +P.  ( ( X  .P.  U )  +P.  ( W  .P.  U ) ) ) )
25 distrprg 7550 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
) )
2625adantl 275 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  .P.  ( g  +P.  h
) )  =  ( ( f  .P.  g
)  +P.  ( f  .P.  h ) ) )
27 mulcomprg 7542 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  =  ( g  .P.  f ) )
2827adantl 275 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  .P.  g )  =  ( g  .P.  f ) )
2926, 13, 17, 14, 4, 28caovdir2d 6029 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
U )  =  ( ( X  .P.  U
)  +P.  ( W  .P.  U ) ) )
3026, 5, 9, 6, 4, 28caovdir2d 6029 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  =  ( ( Z  .P.  V
)  +P.  ( Y  .P.  V ) ) )
3129, 30oveq12d 5871 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) )  =  ( ( ( X  .P.  U
)  +P.  ( W  .P.  U ) )  +P.  ( ( Z  .P.  V )  +P.  ( Y  .P.  V ) ) ) )
3221, 24, 313eqtr4d 2213 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  U
)  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  =  ( ( ( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) ) )
33 mulclpr 7534 . . . . . . 7  |-  ( ( X  e.  P.  /\  V  e.  P. )  ->  ( X  .P.  V
)  e.  P. )
3413, 6, 33syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  .P.  V )  e.  P. )
35 mulclpr 7534 . . . . . . 7  |-  ( ( Y  e.  P.  /\  U  e.  P. )  ->  ( Y  .P.  U
)  e.  P. )
369, 14, 35syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Y  .P.  U )  e.  P. )
37 mulclpr 7534 . . . . . . 7  |-  ( ( Z  e.  P.  /\  U  e.  P. )  ->  ( Z  .P.  U
)  e.  P. )
385, 14, 37syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  .P.  U )  e.  P. )
39 mulclpr 7534 . . . . . . 7  |-  ( ( W  e.  P.  /\  V  e.  P. )  ->  ( W  .P.  V
)  e.  P. )
4017, 6, 39syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( W  .P.  V )  e.  P. )
4134, 36, 38, 2, 23, 40, 4caov411d 6038 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  V
)  +P.  ( Y  .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W  .P.  V ) ) )  =  ( ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) )  +P.  ( ( X  .P.  V )  +P.  ( W  .P.  V ) ) ) )
4226, 5, 9, 14, 4, 28caovdir2d 6029 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
U )  =  ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) ) )
4326, 13, 17, 6, 4, 28caovdir2d 6029 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  =  ( ( X  .P.  V
)  +P.  ( W  .P.  V ) ) )
4442, 43oveq12d 5871 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) )  =  ( ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) )  +P.  ( ( X  .P.  V )  +P.  ( W  .P.  V ) ) ) )
4541, 44eqtr4d 2206 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  V
)  +P.  ( Y  .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W  .P.  V ) ) )  =  ( ( ( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) ) )
4632, 45breq12d 4002 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  <-> 
( ( ( X  +P.  W )  .P. 
U )  +P.  (
( Z  +P.  Y
)  .P.  V )
)  <P  ( ( ( Z  +P.  Y )  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) ) ) )
4729, 20eqeltrd 2247 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
U )  e.  P. )
4830, 12eqeltrd 2247 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  e.  P. )
49 addclpr 7499 . . . . . . 7  |-  ( ( Z  e.  P.  /\  Y  e.  P. )  ->  ( Z  +P.  Y
)  e.  P. )
505, 9, 49syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  +P.  Y )  e.  P. )
51 mulclpr 7534 . . . . . 6  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  U  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  U )  e.  P. )
5250, 14, 51syl2anc 409 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
U )  e.  P. )
53 addclpr 7499 . . . . . . 7  |-  ( ( X  e.  P.  /\  W  e.  P. )  ->  ( X  +P.  W
)  e.  P. )
5413, 17, 53syl2anc 409 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  +P.  W )  e.  P. )
55 mulclpr 7534 . . . . . 6  |-  ( ( ( X  +P.  W
)  e.  P.  /\  V  e.  P. )  ->  ( ( X  +P.  W )  .P.  V )  e.  P. )
5654, 6, 55syl2anc 409 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  e.  P. )
57 addextpr 7583 . . . . 5  |-  ( ( ( ( ( X  +P.  W )  .P. 
U )  e.  P.  /\  ( ( Z  +P.  Y )  .P.  V )  e.  P. )  /\  ( ( ( Z  +P.  Y )  .P. 
U )  e.  P.  /\  ( ( X  +P.  W )  .P.  V )  e.  P. ) )  ->  ( ( ( ( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) )  <P  ( (
( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) )  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
) ) )
5847, 48, 52, 56, 57syl22anc 1234 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U )  +P.  ( ( Z  +P.  Y )  .P. 
V ) )  <P 
( ( ( Z  +P.  Y )  .P. 
U )  +P.  (
( X  +P.  W
)  .P.  V )
)  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
) ) )
59 mulcomprg 7542 . . . . . . . . 9  |-  ( ( ( X  +P.  W
)  e.  P.  /\  U  e.  P. )  ->  ( ( X  +P.  W )  .P.  U )  =  ( U  .P.  ( X  +P.  W ) ) )
60593adant2 1011 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( X  +P.  W
)  .P.  U )  =  ( U  .P.  ( X  +P.  W ) ) )
61 mulcomprg 7542 . . . . . . . . 9  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  U  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  U )  =  ( U  .P.  ( Z  +P.  Y ) ) )
62613adant1 1010 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( Z  +P.  Y
)  .P.  U )  =  ( U  .P.  ( Z  +P.  Y ) ) )
6360, 62breq12d 4002 . . . . . . 7  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  <-> 
( U  .P.  ( X  +P.  W ) ) 
<P  ( U  .P.  ( Z  +P.  Y ) ) ) )
64 ltmprr 7604 . . . . . . 7  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( U  .P.  ( X  +P.  W ) ) 
<P  ( U  .P.  ( Z  +P.  Y ) )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
6563, 64sylbid 149 . . . . . 6  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
6654, 50, 14, 65syl3anc 1233 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
67 mulcomprg 7542 . . . . . . . 8  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  V  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  V )  =  ( V  .P.  ( Z  +P.  Y ) ) )
6850, 6, 67syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  =  ( V  .P.  ( Z  +P.  Y ) ) )
69 mulcomprg 7542 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  V  e.  P. )  ->  ( ( X  +P.  W )  .P.  V )  =  ( V  .P.  ( X  +P.  W ) ) )
7054, 6, 69syl2anc 409 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  =  ( V  .P.  ( X  +P.  W ) ) )
7168, 70breq12d 4002 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  V )  <P  ( ( X  +P.  W )  .P.  V )  <-> 
( V  .P.  ( Z  +P.  Y ) ) 
<P  ( V  .P.  ( X  +P.  W ) ) ) )
72 ltmprr 7604 . . . . . . 7  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  ( X  +P.  W )  e.  P.  /\  V  e.  P. )  ->  (
( V  .P.  ( Z  +P.  Y ) ) 
<P  ( V  .P.  ( X  +P.  W ) )  ->  ( Z  +P.  Y )  <P  ( X  +P.  W ) ) )
7350, 54, 6, 72syl3anc 1233 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( V  .P.  ( Z  +P.  Y ) )  <P  ( V  .P.  ( X  +P.  W ) )  ->  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) )
7471, 73sylbid 149 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  V )  <P  ( ( X  +P.  W )  .P.  V )  ->  ( Z  +P.  Y )  <P  ( X  +P.  W ) ) )
7566, 74orim12d 781 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
7658, 75syld 45 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U )  +P.  ( ( Z  +P.  Y )  .P. 
V ) )  <P 
( ( ( Z  +P.  Y )  .P. 
U )  +P.  (
( X  +P.  W
)  .P.  V )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
7746, 76sylbid 149 . 2  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
78 addcomprg 7540 . . . . 5  |-  ( ( Z  e.  P.  /\  Y  e.  P. )  ->  ( Z  +P.  Y
)  =  ( Y  +P.  Z ) )
795, 9, 78syl2anc 409 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  +P.  Y )  =  ( Y  +P.  Z ) )
8079breq2d 4001 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  <->  ( X  +P.  W )  <P  ( Y  +P.  Z ) ) )
81 addcomprg 7540 . . . . 5  |-  ( ( X  e.  P.  /\  W  e.  P. )  ->  ( X  +P.  W
)  =  ( W  +P.  X ) )
8213, 17, 81syl2anc 409 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  +P.  W )  =  ( W  +P.  X ) )
8382breq2d 4001 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  <P 
( X  +P.  W
)  <->  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) )
8480, 83orbi12d 788 . 2  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  <P  ( Z  +P.  Y )  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) )  <->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )
8577, 84sylibd 148 1  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   P.cnp 7253    +P. cpp 7255    .P. cmp 7256    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432
This theorem is referenced by:  mulextsr1  7743
  Copyright terms: Public domain W3C validator