Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caov4d | Unicode version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | |
caovd.2 | |
caovd.3 | |
caovd.com | |
caovd.ass | |
caovd.4 | |
caovd.cl |
Ref | Expression |
---|---|
caov4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.2 | . . . 4 | |
2 | caovd.3 | . . . 4 | |
3 | caovd.4 | . . . 4 | |
4 | caovd.com | . . . 4 | |
5 | caovd.ass | . . . 4 | |
6 | 1, 2, 3, 4, 5 | caov12d 5999 | . . 3 |
7 | 6 | oveq2d 5837 | . 2 |
8 | caovd.1 | . . 3 | |
9 | caovd.cl | . . . 4 | |
10 | 9, 2, 3 | caovcld 5971 | . . 3 |
11 | 5, 8, 1, 10 | caovassd 5977 | . 2 |
12 | 9, 1, 3 | caovcld 5971 | . . 3 |
13 | 5, 8, 2, 12 | caovassd 5977 | . 2 |
14 | 7, 11, 13 | 3eqtr4d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 (class class class)co 5821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 |
This theorem is referenced by: caov411d 6003 caov42d 6004 ecopovtrn 6574 ecopovtrng 6577 addcmpblnq 7281 mulcmpblnq 7282 ordpipqqs 7288 distrnqg 7301 ltsonq 7312 ltanqg 7314 ltmnqg 7315 addcmpblnq0 7357 mulcmpblnq0 7358 distrnq0 7373 prarloclemlo 7408 addlocprlemeqgt 7446 addcanprleml 7528 recexprlem1ssl 7547 recexprlem1ssu 7548 mulcmpblnrlemg 7654 distrsrg 7673 ltasrg 7684 mulgt0sr 7692 prsradd 7700 axdistr 7788 |
Copyright terms: Public domain | W3C validator |