Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caov4d | Unicode version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | |
caovd.2 | |
caovd.3 | |
caovd.com | |
caovd.ass | |
caovd.4 | |
caovd.cl |
Ref | Expression |
---|---|
caov4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.2 | . . . 4 | |
2 | caovd.3 | . . . 4 | |
3 | caovd.4 | . . . 4 | |
4 | caovd.com | . . . 4 | |
5 | caovd.ass | . . . 4 | |
6 | 1, 2, 3, 4, 5 | caov12d 6034 | . . 3 |
7 | 6 | oveq2d 5869 | . 2 |
8 | caovd.1 | . . 3 | |
9 | caovd.cl | . . . 4 | |
10 | 9, 2, 3 | caovcld 6006 | . . 3 |
11 | 5, 8, 1, 10 | caovassd 6012 | . 2 |
12 | 9, 1, 3 | caovcld 6006 | . . 3 |
13 | 5, 8, 2, 12 | caovassd 6012 | . 2 |
14 | 7, 11, 13 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: caov411d 6038 caov42d 6039 ecopovtrn 6610 ecopovtrng 6613 addcmpblnq 7329 mulcmpblnq 7330 ordpipqqs 7336 distrnqg 7349 ltsonq 7360 ltanqg 7362 ltmnqg 7363 addcmpblnq0 7405 mulcmpblnq0 7406 distrnq0 7421 prarloclemlo 7456 addlocprlemeqgt 7494 addcanprleml 7576 recexprlem1ssl 7595 recexprlem1ssu 7596 mulcmpblnrlemg 7702 distrsrg 7721 ltasrg 7732 mulgt0sr 7740 prsradd 7748 axdistr 7836 |
Copyright terms: Public domain | W3C validator |