ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov4d Unicode version

Theorem caov4d 6105
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
caovd.4  |-  ( ph  ->  D  e.  S )
caovd.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
Assertion
Ref Expression
caov4d  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov4d
StepHypRef Expression
1 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
2 caovd.3 . . . 4  |-  ( ph  ->  C  e.  S )
3 caovd.4 . . . 4  |-  ( ph  ->  D  e.  S )
4 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
5 caovd.ass . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
61, 2, 3, 4, 5caov12d 6102 . . 3  |-  ( ph  ->  ( B F ( C F D ) )  =  ( C F ( B F D ) ) )
76oveq2d 5935 . 2  |-  ( ph  ->  ( A F ( B F ( C F D ) ) )  =  ( A F ( C F ( B F D ) ) ) )
8 caovd.1 . . 3  |-  ( ph  ->  A  e.  S )
9 caovd.cl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
109, 2, 3caovcld 6074 . . 3  |-  ( ph  ->  ( C F D )  e.  S )
115, 8, 1, 10caovassd 6080 . 2  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( A F ( B F ( C F D ) ) ) )
129, 1, 3caovcld 6074 . . 3  |-  ( ph  ->  ( B F D )  e.  S )
135, 8, 2, 12caovassd 6080 . 2  |-  ( ph  ->  ( ( A F C ) F ( B F D ) )  =  ( A F ( C F ( B F D ) ) ) )
147, 11, 133eqtr4d 2236 1  |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  caov411d  6106  caov42d  6107  ecopovtrn  6688  ecopovtrng  6691  addcmpblnq  7429  mulcmpblnq  7430  ordpipqqs  7436  distrnqg  7449  ltsonq  7460  ltanqg  7462  ltmnqg  7463  addcmpblnq0  7505  mulcmpblnq0  7506  distrnq0  7521  prarloclemlo  7556  addlocprlemeqgt  7594  addcanprleml  7676  recexprlem1ssl  7695  recexprlem1ssu  7696  mulcmpblnrlemg  7802  distrsrg  7821  ltasrg  7832  mulgt0sr  7840  prsradd  7848  axdistr  7936
  Copyright terms: Public domain W3C validator