ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov411d GIF version

Theorem caov411d 6155
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov411d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov411d
StepHypRef Expression
1 caovd.2 . . 3 (𝜑𝐵𝑆)
2 caovd.1 . . 3 (𝜑𝐴𝑆)
3 caovd.3 . . 3 (𝜑𝐶𝑆)
4 caovd.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
6 caovd.4 . . 3 (𝜑𝐷𝑆)
7 caovd.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
81, 2, 3, 4, 5, 6, 7caov4d 6154 . 2 (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷)))
94, 1, 2caovcomd 6126 . . 3 (𝜑 → (𝐵𝐹𝐴) = (𝐴𝐹𝐵))
109oveq1d 5982 . 2 (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)))
114, 1, 3caovcomd 6126 . . 3 (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵))
1211oveq1d 5982 . 2 (𝜑 → ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
138, 10, 123eqtr3d 2248 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  ecopovtrn  6742  ecopovtrng  6745  ltsonq  7546  ltanqg  7548  mulextsr1lem  7928
  Copyright terms: Public domain W3C validator