Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caov411d | GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
caovd.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
caovd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
caov411d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
2 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | caovd.com | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
5 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
6 | caovd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
7 | caovd.cl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | caov4d 6037 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷))) |
9 | 4, 1, 2 | caovcomd 6009 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐴) = (𝐴𝐹𝐵)) |
10 | 9 | oveq1d 5868 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐴)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷))) |
11 | 4, 1, 3 | caovcomd 6009 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵)) |
12 | 11 | oveq1d 5868 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐶)𝐹(𝐴𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
13 | 8, 10, 12 | 3eqtr3d 2211 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: ecopovtrn 6610 ecopovtrng 6613 ltsonq 7360 ltanqg 7362 mulextsr1lem 7742 |
Copyright terms: Public domain | W3C validator |