ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnrlemg Unicode version

Theorem mulcmpblnrlemg 7800
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
Assertion
Ref Expression
mulcmpblnrlemg  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) ) )

Proof of Theorem mulcmpblnrlemg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  B  e.  P. )
2 simprlr 538 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  G  e.  P. )
3 mulclpr 7632 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  .P.  G
)  e.  P. )
41, 2, 3syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  G )  e.  P. )
5 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  D  e.  P. )
6 simprrl 539 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  R  e.  P. )
7 mulclpr 7632 . . . . . . . . 9  |-  ( ( D  e.  P.  /\  R  e.  P. )  ->  ( D  .P.  R
)  e.  P. )
85, 6, 7syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  R )  e.  P. )
9 addclpr 7597 . . . . . . . 8  |-  ( ( ( B  .P.  G
)  e.  P.  /\  ( D  .P.  R )  e.  P. )  -> 
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  e.  P. )
104, 8, 9syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  e.  P. )
11 simplrl 535 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  C  e.  P. )
12 mulclpr 7632 . . . . . . . 8  |-  ( ( C  e.  P.  /\  G  e.  P. )  ->  ( C  .P.  G
)  e.  P. )
1311, 2, 12syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  G )  e.  P. )
14 simprll 537 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  F  e.  P. )
15 mulclpr 7632 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  F  e.  P. )  ->  ( B  .P.  F
)  e.  P. )
161, 14, 15syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  F )  e.  P. )
17 mulclpr 7632 . . . . . . . . 9  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  .P.  R
)  e.  P. )
1811, 6, 17syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  R )  e.  P. )
19 addclpr 7597 . . . . . . . 8  |-  ( ( ( B  .P.  F
)  e.  P.  /\  ( C  .P.  R )  e.  P. )  -> 
( ( B  .P.  F )  +P.  ( C  .P.  R ) )  e.  P. )
2016, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  .P.  F )  +P.  ( C  .P.  R
) )  e.  P. )
21 addassprg 7639 . . . . . . 7  |-  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  e.  P.  /\  ( C  .P.  G )  e. 
P.  /\  ( ( B  .P.  F )  +P.  ( C  .P.  R
) )  e.  P. )  ->  ( ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G
) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  (
( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) ) )
2210, 13, 20, 21syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G
) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  (
( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) ) )
2322adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  +P.  ( C  .P.  G ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  +P.  (
( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) ) )
24 oveq2 5926 . . . . . . . . . . 11  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( D  .P.  ( F  +P.  S
) )  =  ( D  .P.  ( G  +P.  R ) ) )
2524ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  ( D  .P.  ( F  +P.  S ) )  =  ( D  .P.  ( G  +P.  R ) ) )
26 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  S  e.  P. )
27 distrprg 7648 . . . . . . . . . . . 12  |-  ( ( D  e.  P.  /\  F  e.  P.  /\  S  e.  P. )  ->  ( D  .P.  ( F  +P.  S ) )  =  ( ( D  .P.  F
)  +P.  ( D  .P.  S ) ) )
285, 14, 26, 27syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  ( F  +P.  S ) )  =  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )
2928adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  ( D  .P.  ( F  +P.  S ) )  =  ( ( D  .P.  F
)  +P.  ( D  .P.  S ) ) )
30 distrprg 7648 . . . . . . . . . . . 12  |-  ( ( D  e.  P.  /\  G  e.  P.  /\  R  e.  P. )  ->  ( D  .P.  ( G  +P.  R ) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) ) )
315, 2, 6, 30syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  ( G  +P.  R ) )  =  ( ( D  .P.  G )  +P.  ( D  .P.  R ) ) )
3231adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  ( D  .P.  ( G  +P.  R ) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) ) )
3325, 29, 323eqtr3d 2234 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( D  .P.  S ) )  =  ( ( D  .P.  G )  +P.  ( D  .P.  R ) ) )
3433oveq2d 5934 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  .P.  G
)  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( A  .P.  G )  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R ) ) ) )
35 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  A  e.  P. )
36 mulclpr 7632 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  G  e.  P. )  ->  ( A  .P.  G
)  e.  P. )
3735, 2, 36syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  G )  e.  P. )
38 mulclpr 7632 . . . . . . . . . . 11  |-  ( ( D  e.  P.  /\  G  e.  P. )  ->  ( D  .P.  G
)  e.  P. )
395, 2, 38syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  G )  e.  P. )
40 addassprg 7639 . . . . . . . . . 10  |-  ( ( ( A  .P.  G
)  e.  P.  /\  ( D  .P.  G )  e.  P.  /\  ( D  .P.  R )  e. 
P. )  ->  (
( ( A  .P.  G )  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( A  .P.  G
)  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) ) )
4137, 39, 8, 40syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  G )  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( A  .P.  G )  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R ) ) ) )
4241adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  G )  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( A  .P.  G
)  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) ) )
43 oveq1 5925 . . . . . . . . . . 11  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
G )  =  ( ( B  +P.  C
)  .P.  G )
)
4443ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  +P.  D
)  .P.  G )  =  ( ( B  +P.  C )  .P. 
G ) )
45 distrprg 7648 . . . . . . . . . . . . 13  |-  ( ( G  e.  P.  /\  A  e.  P.  /\  D  e.  P. )  ->  ( G  .P.  ( A  +P.  D ) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) ) )
462, 35, 5, 45syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  .P.  ( A  +P.  D ) )  =  ( ( G  .P.  A )  +P.  ( G  .P.  D ) ) )
47 addclpr 7597 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  D  e.  P. )  ->  ( A  +P.  D
)  e.  P. )
4835, 5, 47syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  +P.  D )  e.  P. )
49 mulcomprg 7640 . . . . . . . . . . . . 13  |-  ( ( ( A  +P.  D
)  e.  P.  /\  G  e.  P. )  ->  ( ( A  +P.  D )  .P.  G )  =  ( G  .P.  ( A  +P.  D ) ) )
5048, 2, 49syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  .P. 
G )  =  ( G  .P.  ( A  +P.  D ) ) )
51 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  G  e.  P. )  ->  ( A  .P.  G
)  =  ( G  .P.  A ) )
5235, 2, 51syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  G )  =  ( G  .P.  A ) )
53 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( D  e.  P.  /\  G  e.  P. )  ->  ( D  .P.  G
)  =  ( G  .P.  D ) )
545, 2, 53syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  G )  =  ( G  .P.  D ) )
5552, 54oveq12d 5936 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  G )  +P.  ( D  .P.  G
) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) ) )
5646, 50, 553eqtr4d 2236 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  .P. 
G )  =  ( ( A  .P.  G
)  +P.  ( D  .P.  G ) ) )
5756adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  +P.  D
)  .P.  G )  =  ( ( A  .P.  G )  +P.  ( D  .P.  G
) ) )
58 distrprg 7648 . . . . . . . . . . . . 13  |-  ( ( G  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( G  .P.  ( B  +P.  C ) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) ) )
592, 1, 11, 58syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  .P.  ( B  +P.  C ) )  =  ( ( G  .P.  B )  +P.  ( G  .P.  C ) ) )
60 addclpr 7597 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
611, 11, 60syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  +P.  C )  e.  P. )
62 mulcomprg 7640 . . . . . . . . . . . . 13  |-  ( ( ( B  +P.  C
)  e.  P.  /\  G  e.  P. )  ->  ( ( B  +P.  C )  .P.  G )  =  ( G  .P.  ( B  +P.  C ) ) )
6361, 2, 62syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  .P. 
G )  =  ( G  .P.  ( B  +P.  C ) ) )
64 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  .P.  G
)  =  ( G  .P.  B ) )
651, 2, 64syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  G )  =  ( G  .P.  B ) )
66 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( C  e.  P.  /\  G  e.  P. )  ->  ( C  .P.  G
)  =  ( G  .P.  C ) )
6711, 2, 66syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  G )  =  ( G  .P.  C ) )
6865, 67oveq12d 5936 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  .P.  G )  +P.  ( C  .P.  G
) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) ) )
6959, 63, 683eqtr4d 2236 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  .P. 
G )  =  ( ( B  .P.  G
)  +P.  ( C  .P.  G ) ) )
7069adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( B  +P.  C
)  .P.  G )  =  ( ( B  .P.  G )  +P.  ( C  .P.  G
) ) )
7144, 57, 703eqtr3d 2234 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  .P.  G
)  +P.  ( D  .P.  G ) )  =  ( ( B  .P.  G )  +P.  ( C  .P.  G ) ) )
7271oveq1d 5933 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  G )  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R ) ) )
7334, 42, 723eqtr2d 2232 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  .P.  G
)  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G
) )  +P.  ( D  .P.  R ) ) )
74 mulclpr 7632 . . . . . . . . . 10  |-  ( ( D  e.  P.  /\  F  e.  P. )  ->  ( D  .P.  F
)  e.  P. )
755, 14, 74syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  F )  e.  P. )
76 mulclpr 7632 . . . . . . . . . 10  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  .P.  S
)  e.  P. )
775, 26, 76syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  S )  e.  P. )
78 addcomprg 7638 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
7978adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P. ) )  ->  (
x  +P.  y )  =  ( y  +P.  x ) )
80 addassprg 7639 . . . . . . . . . 10  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( x  +P.  y
)  +P.  z )  =  ( x  +P.  ( y  +P.  z
) ) )
8180adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P.  /\  z  e.  P. ) )  ->  (
( x  +P.  y
)  +P.  z )  =  ( x  +P.  ( y  +P.  z
) ) )
8237, 75, 77, 79, 81caov12d 6100 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )  =  ( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) ) )
8382adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( A  .P.  G
)  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) ) )
844, 13, 8, 79, 81caov32d 6099 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) ) )
8584adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( B  .P.  G )  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) ) )
8673, 83, 853eqtr3d 2234 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  +P.  ( C  .P.  G ) ) )
8786oveq1d 5933 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )
88 oveq1 5925 . . . . . . . . . . . 12  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( B  +P.  C
)  .P.  F )
)
8988adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( A  +P.  D )  =  ( B  +P.  C ) )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( B  +P.  C
)  .P.  F )
)
90 distrprg 7648 . . . . . . . . . . . . . 14  |-  ( ( F  e.  P.  /\  A  e.  P.  /\  D  e.  P. )  ->  ( F  .P.  ( A  +P.  D ) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) ) )
9114, 35, 5, 90syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  .P.  ( A  +P.  D ) )  =  ( ( F  .P.  A )  +P.  ( F  .P.  D ) ) )
92 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( ( A  +P.  D
)  e.  P.  /\  F  e.  P. )  ->  ( ( A  +P.  D )  .P.  F )  =  ( F  .P.  ( A  +P.  D ) ) )
9348, 14, 92syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( F  .P.  ( A  +P.  D ) ) )
94 mulcomprg 7640 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  .P.  F
)  =  ( F  .P.  A ) )
9535, 14, 94syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  F )  =  ( F  .P.  A ) )
96 mulcomprg 7640 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  P.  /\  F  e.  P. )  ->  ( D  .P.  F
)  =  ( F  .P.  D ) )
975, 14, 96syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  F )  =  ( F  .P.  D ) )
9895, 97oveq12d 5936 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  F )  +P.  ( D  .P.  F
) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) ) )
9991, 93, 983eqtr4d 2236 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( A  .P.  F
)  +P.  ( D  .P.  F ) ) )
10099adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( A  +P.  D )  =  ( B  +P.  C ) )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( A  .P.  F
)  +P.  ( D  .P.  F ) ) )
101 distrprg 7648 . . . . . . . . . . . . . 14  |-  ( ( F  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( F  .P.  ( B  +P.  C ) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) ) )
10214, 1, 11, 101syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  .P.  ( B  +P.  C ) )  =  ( ( F  .P.  B )  +P.  ( F  .P.  C ) ) )
103 mulcomprg 7640 . . . . . . . . . . . . . 14  |-  ( ( ( B  +P.  C
)  e.  P.  /\  F  e.  P. )  ->  ( ( B  +P.  C )  .P.  F )  =  ( F  .P.  ( B  +P.  C ) ) )
10461, 14, 103syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  .P. 
F )  =  ( F  .P.  ( B  +P.  C ) ) )
105 mulcomprg 7640 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  F  e.  P. )  ->  ( B  .P.  F
)  =  ( F  .P.  B ) )
1061, 14, 105syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  F )  =  ( F  .P.  B ) )
107 mulcomprg 7640 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  P.  /\  F  e.  P. )  ->  ( C  .P.  F
)  =  ( F  .P.  C ) )
10811, 14, 107syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  F )  =  ( F  .P.  C ) )
109106, 108oveq12d 5936 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  .P.  F )  +P.  ( C  .P.  F
) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) ) )
110102, 104, 1093eqtr4d 2236 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  .P. 
F )  =  ( ( B  .P.  F
)  +P.  ( C  .P.  F ) ) )
111110adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( A  +P.  D )  =  ( B  +P.  C ) )  ->  ( ( B  +P.  C )  .P. 
F )  =  ( ( B  .P.  F
)  +P.  ( C  .P.  F ) ) )
11289, 100, 1113eqtr3d 2234 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( A  +P.  D )  =  ( B  +P.  C ) )  ->  ( ( A  .P.  F )  +P.  ( D  .P.  F
) )  =  ( ( B  .P.  F
)  +P.  ( C  .P.  F ) ) )
113112oveq1d 5933 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( A  +P.  D )  =  ( B  +P.  C ) )  ->  ( ( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) ) )
114113adantrr 479 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) ) )
115 mulclpr 7632 . . . . . . . . . . . . 13  |-  ( ( C  e.  P.  /\  F  e.  P. )  ->  ( C  .P.  F
)  e.  P. )
11611, 14, 115syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  F )  e.  P. )
117 mulclpr 7632 . . . . . . . . . . . . 13  |-  ( ( C  e.  P.  /\  S  e.  P. )  ->  ( C  .P.  S
)  e.  P. )
11811, 26, 117syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  S )  e.  P. )
119 addassprg 7639 . . . . . . . . . . . 12  |-  ( ( ( B  .P.  F
)  e.  P.  /\  ( C  .P.  F )  e.  P.  /\  ( C  .P.  S )  e. 
P. )  ->  (
( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S
) ) ) )
12016, 116, 118, 119syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) ) )
121120adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) ) )
122 oveq2 5926 . . . . . . . . . . . . 13  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( C  .P.  ( F  +P.  S
) )  =  ( C  .P.  ( G  +P.  R ) ) )
123122adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( C  .P.  ( F  +P.  S ) )  =  ( C  .P.  ( G  +P.  R ) ) )
124 distrprg 7648 . . . . . . . . . . . . . 14  |-  ( ( C  e.  P.  /\  F  e.  P.  /\  S  e.  P. )  ->  ( C  .P.  ( F  +P.  S ) )  =  ( ( C  .P.  F
)  +P.  ( C  .P.  S ) ) )
12511, 14, 26, 124syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  ( F  +P.  S ) )  =  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) )
126125adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( C  .P.  ( F  +P.  S ) )  =  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) )
127 distrprg 7648 . . . . . . . . . . . . . 14  |-  ( ( C  e.  P.  /\  G  e.  P.  /\  R  e.  P. )  ->  ( C  .P.  ( G  +P.  R ) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) ) )
12811, 2, 6, 127syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  ( G  +P.  R ) )  =  ( ( C  .P.  G )  +P.  ( C  .P.  R ) ) )
129128adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( C  .P.  ( G  +P.  R ) )  =  ( ( C  .P.  G )  +P.  ( C  .P.  R ) ) )
130123, 126, 1293eqtr3d 2234 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( ( C  .P.  F )  +P.  ( C  .P.  S
) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) ) )
131130oveq2d 5934 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( ( B  .P.  F )  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
132121, 131eqtrd 2226 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R ) ) ) )
133132adantrl 478 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
134114, 133eqtrd 2226 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
135 mulclpr 7632 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  .P.  F
)  e.  P. )
13635, 14, 135syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  F )  e.  P. )
137136, 75, 118, 79, 81caov32d 6099 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )
138137adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )
13916, 13, 18, 79, 81caov12d 6100 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R ) ) )  =  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
140139adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) )  =  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) )
141134, 138, 1403eqtr3d 2234 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) )  =  ( ( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
142141oveq2d 5934 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
14323, 87, 1423eqtr4rd 2237 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) )
144 addclpr 7597 . . . . . . 7  |-  ( ( ( A  .P.  F
)  e.  P.  /\  ( C  .P.  S )  e.  P. )  -> 
( ( A  .P.  F )  +P.  ( C  .P.  S ) )  e.  P. )
145136, 118, 144syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  F )  +P.  ( C  .P.  S
) )  e.  P. )
14610, 145, 75, 79, 81caov13d 6102 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  (
( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) ) ) )
147146adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) ) )
148 addclpr 7597 . . . . . . 7  |-  ( ( ( A  .P.  G
)  e.  P.  /\  ( D  .P.  S )  e.  P. )  -> 
( ( A  .P.  G )  +P.  ( D  .P.  S ) )  e.  P. )
14937, 77, 148syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  G )  +P.  ( D  .P.  S
) )  e.  P. )
150 addassprg 7639 . . . . . 6  |-  ( ( ( D  .P.  F
)  e.  P.  /\  ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  e.  P.  /\  (
( B  .P.  F
)  +P.  ( C  .P.  R ) )  e. 
P. )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) ) )
15175, 149, 20, 150syl3anc 1249 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) ) )
152151adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) ) )
153143, 147, 1523eqtr3d 2234 . . 3  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
154 addclpr 7597 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  e.  P. )
155154adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P. ) )  ->  (
x  +P.  y )  e.  P. )
156136, 118, 4, 79, 81, 8, 155caov4d 6103 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) )  =  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) ) )
157156oveq2d 5934 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S
) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) ) ) )
158157adantr 276 . . 3  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) ) )
15937, 77, 16, 79, 81, 18, 155caov42d 6105 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) )  =  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) )
160159oveq2d 5934 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S
) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) ) )
161160adantr 276 . . 3  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )
162153, 158, 1613eqtr3d 2234 . 2  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  /\  ( ( A  +P.  D )  =  ( B  +P.  C
)  /\  ( F  +P.  S )  =  ( G  +P.  R ) ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )
163162ex 115 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5918   P.cnp 7351    +P. cpp 7353    .P. cmp 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-imp 7529
This theorem is referenced by:  mulcmpblnr  7801
  Copyright terms: Public domain W3C validator