ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov42d GIF version

Theorem caov42d 6039
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
caovd.4 (𝜑𝐷𝑆)
caovd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
Assertion
Ref Expression
caov42d (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov42d
StepHypRef Expression
1 caovd.1 . . 3 (𝜑𝐴𝑆)
2 caovd.2 . . 3 (𝜑𝐵𝑆)
3 caovd.3 . . 3 (𝜑𝐶𝑆)
4 caovd.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
5 caovd.ass . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
6 caovd.4 . . 3 (𝜑𝐷𝑆)
7 caovd.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
81, 2, 3, 4, 5, 6, 7caov4d 6037 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)))
94, 2, 6caovcomd 6009 . . 3 (𝜑 → (𝐵𝐹𝐷) = (𝐷𝐹𝐵))
109oveq2d 5869 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵)))
118, 10eqtrd 2203 1 (𝜑 → ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovlem2d  6045  mulcmpblnrlemg  7702  ltasrg  7732  axmulass  7835
  Copyright terms: Public domain W3C validator