| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltasrg | Unicode version | ||
| Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| ltasrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7914 |
. . 3
| |
| 2 | oveq1 6008 |
. . . . 5
| |
| 3 | oveq1 6008 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4096 |
. . . 4
|
| 5 | 4 | bibi2d 232 |
. . 3
|
| 6 | breq1 4086 |
. . . 4
| |
| 7 | oveq2 6009 |
. . . . 5
| |
| 8 | 7 | breq1d 4093 |
. . . 4
|
| 9 | 6, 8 | bibi12d 235 |
. . 3
|
| 10 | breq2 4087 |
. . . 4
| |
| 11 | oveq2 6009 |
. . . . 5
| |
| 12 | 11 | breq2d 4095 |
. . . 4
|
| 13 | 10, 12 | bibi12d 235 |
. . 3
|
| 14 | simp2l 1047 |
. . . . . . 7
| |
| 15 | simp3r 1050 |
. . . . . . 7
| |
| 16 | addclpr 7724 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | simp2r 1048 |
. . . . . . 7
| |
| 19 | simp3l 1049 |
. . . . . . 7
| |
| 20 | addclpr 7724 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | addclpr 7724 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant1 1042 |
. . . . . 6
|
| 24 | ltaprg 7806 |
. . . . . 6
| |
| 25 | 17, 21, 23, 24 | syl3anc 1271 |
. . . . 5
|
| 26 | ltsrprg 7934 |
. . . . . 6
| |
| 27 | 26 | 3adant1 1039 |
. . . . 5
|
| 28 | simp1l 1045 |
. . . . . . . 8
| |
| 29 | addclpr 7724 |
. . . . . . . 8
| |
| 30 | 28, 14, 29 | syl2anc 411 |
. . . . . . 7
|
| 31 | simp1r 1046 |
. . . . . . . 8
| |
| 32 | addclpr 7724 |
. . . . . . . 8
| |
| 33 | 31, 18, 32 | syl2anc 411 |
. . . . . . 7
|
| 34 | addclpr 7724 |
. . . . . . . 8
| |
| 35 | 28, 19, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | addclpr 7724 |
. . . . . . . 8
| |
| 37 | 31, 15, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | ltsrprg 7934 |
. . . . . . 7
| |
| 39 | 30, 33, 35, 37, 38 | syl22anc 1272 |
. . . . . 6
|
| 40 | addcomprg 7765 |
. . . . . . . . 9
| |
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | addassprg 7766 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | addclpr 7724 |
. . . . . . . . 9
| |
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 6190 |
. . . . . . 7
|
| 47 | 41, 33, 35 | caovcomd 6162 |
. . . . . . . 8
|
| 48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6192 |
. . . . . . . 8
|
| 49 | 47, 48 | eqtrd 2262 |
. . . . . . 7
|
| 50 | 46, 49 | breq12d 4096 |
. . . . . 6
|
| 51 | 39, 50 | bitrd 188 |
. . . . 5
|
| 52 | 25, 27, 51 | 3bitr4d 220 |
. . . 4
|
| 53 | addsrpr 7932 |
. . . . . 6
| |
| 54 | 53 | 3adant3 1041 |
. . . . 5
|
| 55 | addsrpr 7932 |
. . . . . 6
| |
| 56 | 55 | 3adant2 1040 |
. . . . 5
|
| 57 | 54, 56 | breq12d 4096 |
. . . 4
|
| 58 | 52, 57 | bitr4d 191 |
. . 3
|
| 59 | 1, 5, 9, 13, 58 | 3ecoptocl 6771 |
. 2
|
| 60 | 59 | 3coml 1234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-iltp 7657 df-enr 7913 df-nr 7914 df-plr 7915 df-ltr 7917 |
| This theorem is referenced by: addgt0sr 7962 ltadd1sr 7963 caucvgsrlemoffcau 7985 caucvgsrlemoffgt1 7986 caucvgsrlemoffres 7987 caucvgsr 7989 ltpsrprg 7990 mappsrprg 7991 map2psrprg 7992 suplocsrlempr 7994 axpre-ltadd 8073 |
| Copyright terms: Public domain | W3C validator |