| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltasrg | Unicode version | ||
| Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| ltasrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7811 |
. . 3
| |
| 2 | oveq1 5932 |
. . . . 5
| |
| 3 | oveq1 5932 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4047 |
. . . 4
|
| 5 | 4 | bibi2d 232 |
. . 3
|
| 6 | breq1 4037 |
. . . 4
| |
| 7 | oveq2 5933 |
. . . . 5
| |
| 8 | 7 | breq1d 4044 |
. . . 4
|
| 9 | 6, 8 | bibi12d 235 |
. . 3
|
| 10 | breq2 4038 |
. . . 4
| |
| 11 | oveq2 5933 |
. . . . 5
| |
| 12 | 11 | breq2d 4046 |
. . . 4
|
| 13 | 10, 12 | bibi12d 235 |
. . 3
|
| 14 | simp2l 1025 |
. . . . . . 7
| |
| 15 | simp3r 1028 |
. . . . . . 7
| |
| 16 | addclpr 7621 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | simp2r 1026 |
. . . . . . 7
| |
| 19 | simp3l 1027 |
. . . . . . 7
| |
| 20 | addclpr 7621 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | addclpr 7621 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant1 1020 |
. . . . . 6
|
| 24 | ltaprg 7703 |
. . . . . 6
| |
| 25 | 17, 21, 23, 24 | syl3anc 1249 |
. . . . 5
|
| 26 | ltsrprg 7831 |
. . . . . 6
| |
| 27 | 26 | 3adant1 1017 |
. . . . 5
|
| 28 | simp1l 1023 |
. . . . . . . 8
| |
| 29 | addclpr 7621 |
. . . . . . . 8
| |
| 30 | 28, 14, 29 | syl2anc 411 |
. . . . . . 7
|
| 31 | simp1r 1024 |
. . . . . . . 8
| |
| 32 | addclpr 7621 |
. . . . . . . 8
| |
| 33 | 31, 18, 32 | syl2anc 411 |
. . . . . . 7
|
| 34 | addclpr 7621 |
. . . . . . . 8
| |
| 35 | 28, 19, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | addclpr 7621 |
. . . . . . . 8
| |
| 37 | 31, 15, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | ltsrprg 7831 |
. . . . . . 7
| |
| 39 | 30, 33, 35, 37, 38 | syl22anc 1250 |
. . . . . 6
|
| 40 | addcomprg 7662 |
. . . . . . . . 9
| |
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | addassprg 7663 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | addclpr 7621 |
. . . . . . . . 9
| |
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 6112 |
. . . . . . 7
|
| 47 | 41, 33, 35 | caovcomd 6084 |
. . . . . . . 8
|
| 48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6114 |
. . . . . . . 8
|
| 49 | 47, 48 | eqtrd 2229 |
. . . . . . 7
|
| 50 | 46, 49 | breq12d 4047 |
. . . . . 6
|
| 51 | 39, 50 | bitrd 188 |
. . . . 5
|
| 52 | 25, 27, 51 | 3bitr4d 220 |
. . . 4
|
| 53 | addsrpr 7829 |
. . . . . 6
| |
| 54 | 53 | 3adant3 1019 |
. . . . 5
|
| 55 | addsrpr 7829 |
. . . . . 6
| |
| 56 | 55 | 3adant2 1018 |
. . . . 5
|
| 57 | 54, 56 | breq12d 4047 |
. . . 4
|
| 58 | 52, 57 | bitr4d 191 |
. . 3
|
| 59 | 1, 5, 9, 13, 58 | 3ecoptocl 6692 |
. 2
|
| 60 | 59 | 3coml 1212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-iplp 7552 df-iltp 7554 df-enr 7810 df-nr 7811 df-plr 7812 df-ltr 7814 |
| This theorem is referenced by: addgt0sr 7859 ltadd1sr 7860 caucvgsrlemoffcau 7882 caucvgsrlemoffgt1 7883 caucvgsrlemoffres 7884 caucvgsr 7886 ltpsrprg 7887 mappsrprg 7888 map2psrprg 7889 suplocsrlempr 7891 axpre-ltadd 7970 |
| Copyright terms: Public domain | W3C validator |