| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltasrg | Unicode version | ||
| Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| ltasrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7842 |
. . 3
| |
| 2 | oveq1 5953 |
. . . . 5
| |
| 3 | oveq1 5953 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4058 |
. . . 4
|
| 5 | 4 | bibi2d 232 |
. . 3
|
| 6 | breq1 4048 |
. . . 4
| |
| 7 | oveq2 5954 |
. . . . 5
| |
| 8 | 7 | breq1d 4055 |
. . . 4
|
| 9 | 6, 8 | bibi12d 235 |
. . 3
|
| 10 | breq2 4049 |
. . . 4
| |
| 11 | oveq2 5954 |
. . . . 5
| |
| 12 | 11 | breq2d 4057 |
. . . 4
|
| 13 | 10, 12 | bibi12d 235 |
. . 3
|
| 14 | simp2l 1026 |
. . . . . . 7
| |
| 15 | simp3r 1029 |
. . . . . . 7
| |
| 16 | addclpr 7652 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | simp2r 1027 |
. . . . . . 7
| |
| 19 | simp3l 1028 |
. . . . . . 7
| |
| 20 | addclpr 7652 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | addclpr 7652 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant1 1021 |
. . . . . 6
|
| 24 | ltaprg 7734 |
. . . . . 6
| |
| 25 | 17, 21, 23, 24 | syl3anc 1250 |
. . . . 5
|
| 26 | ltsrprg 7862 |
. . . . . 6
| |
| 27 | 26 | 3adant1 1018 |
. . . . 5
|
| 28 | simp1l 1024 |
. . . . . . . 8
| |
| 29 | addclpr 7652 |
. . . . . . . 8
| |
| 30 | 28, 14, 29 | syl2anc 411 |
. . . . . . 7
|
| 31 | simp1r 1025 |
. . . . . . . 8
| |
| 32 | addclpr 7652 |
. . . . . . . 8
| |
| 33 | 31, 18, 32 | syl2anc 411 |
. . . . . . 7
|
| 34 | addclpr 7652 |
. . . . . . . 8
| |
| 35 | 28, 19, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | addclpr 7652 |
. . . . . . . 8
| |
| 37 | 31, 15, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | ltsrprg 7862 |
. . . . . . 7
| |
| 39 | 30, 33, 35, 37, 38 | syl22anc 1251 |
. . . . . 6
|
| 40 | addcomprg 7693 |
. . . . . . . . 9
| |
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | addassprg 7694 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | addclpr 7652 |
. . . . . . . . 9
| |
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 6133 |
. . . . . . 7
|
| 47 | 41, 33, 35 | caovcomd 6105 |
. . . . . . . 8
|
| 48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6135 |
. . . . . . . 8
|
| 49 | 47, 48 | eqtrd 2238 |
. . . . . . 7
|
| 50 | 46, 49 | breq12d 4058 |
. . . . . 6
|
| 51 | 39, 50 | bitrd 188 |
. . . . 5
|
| 52 | 25, 27, 51 | 3bitr4d 220 |
. . . 4
|
| 53 | addsrpr 7860 |
. . . . . 6
| |
| 54 | 53 | 3adant3 1020 |
. . . . 5
|
| 55 | addsrpr 7860 |
. . . . . 6
| |
| 56 | 55 | 3adant2 1019 |
. . . . 5
|
| 57 | 54, 56 | breq12d 4058 |
. . . 4
|
| 58 | 52, 57 | bitr4d 191 |
. . 3
|
| 59 | 1, 5, 9, 13, 58 | 3ecoptocl 6713 |
. 2
|
| 60 | 59 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-iplp 7583 df-iltp 7585 df-enr 7841 df-nr 7842 df-plr 7843 df-ltr 7845 |
| This theorem is referenced by: addgt0sr 7890 ltadd1sr 7891 caucvgsrlemoffcau 7913 caucvgsrlemoffgt1 7914 caucvgsrlemoffres 7915 caucvgsr 7917 ltpsrprg 7918 mappsrprg 7919 map2psrprg 7920 suplocsrlempr 7922 axpre-ltadd 8001 |
| Copyright terms: Public domain | W3C validator |