| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltasrg | Unicode version | ||
| Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| ltasrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7875 |
. . 3
| |
| 2 | oveq1 5974 |
. . . . 5
| |
| 3 | oveq1 5974 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4072 |
. . . 4
|
| 5 | 4 | bibi2d 232 |
. . 3
|
| 6 | breq1 4062 |
. . . 4
| |
| 7 | oveq2 5975 |
. . . . 5
| |
| 8 | 7 | breq1d 4069 |
. . . 4
|
| 9 | 6, 8 | bibi12d 235 |
. . 3
|
| 10 | breq2 4063 |
. . . 4
| |
| 11 | oveq2 5975 |
. . . . 5
| |
| 12 | 11 | breq2d 4071 |
. . . 4
|
| 13 | 10, 12 | bibi12d 235 |
. . 3
|
| 14 | simp2l 1026 |
. . . . . . 7
| |
| 15 | simp3r 1029 |
. . . . . . 7
| |
| 16 | addclpr 7685 |
. . . . . . 7
| |
| 17 | 14, 15, 16 | syl2anc 411 |
. . . . . 6
|
| 18 | simp2r 1027 |
. . . . . . 7
| |
| 19 | simp3l 1028 |
. . . . . . 7
| |
| 20 | addclpr 7685 |
. . . . . . 7
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . 6
|
| 22 | addclpr 7685 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant1 1021 |
. . . . . 6
|
| 24 | ltaprg 7767 |
. . . . . 6
| |
| 25 | 17, 21, 23, 24 | syl3anc 1250 |
. . . . 5
|
| 26 | ltsrprg 7895 |
. . . . . 6
| |
| 27 | 26 | 3adant1 1018 |
. . . . 5
|
| 28 | simp1l 1024 |
. . . . . . . 8
| |
| 29 | addclpr 7685 |
. . . . . . . 8
| |
| 30 | 28, 14, 29 | syl2anc 411 |
. . . . . . 7
|
| 31 | simp1r 1025 |
. . . . . . . 8
| |
| 32 | addclpr 7685 |
. . . . . . . 8
| |
| 33 | 31, 18, 32 | syl2anc 411 |
. . . . . . 7
|
| 34 | addclpr 7685 |
. . . . . . . 8
| |
| 35 | 28, 19, 34 | syl2anc 411 |
. . . . . . 7
|
| 36 | addclpr 7685 |
. . . . . . . 8
| |
| 37 | 31, 15, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | ltsrprg 7895 |
. . . . . . 7
| |
| 39 | 30, 33, 35, 37, 38 | syl22anc 1251 |
. . . . . 6
|
| 40 | addcomprg 7726 |
. . . . . . . . 9
| |
| 41 | 40 | adantl 277 |
. . . . . . . 8
|
| 42 | addassprg 7727 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 277 |
. . . . . . . 8
|
| 44 | addclpr 7685 |
. . . . . . . . 9
| |
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 6154 |
. . . . . . 7
|
| 47 | 41, 33, 35 | caovcomd 6126 |
. . . . . . . 8
|
| 48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6156 |
. . . . . . . 8
|
| 49 | 47, 48 | eqtrd 2240 |
. . . . . . 7
|
| 50 | 46, 49 | breq12d 4072 |
. . . . . 6
|
| 51 | 39, 50 | bitrd 188 |
. . . . 5
|
| 52 | 25, 27, 51 | 3bitr4d 220 |
. . . 4
|
| 53 | addsrpr 7893 |
. . . . . 6
| |
| 54 | 53 | 3adant3 1020 |
. . . . 5
|
| 55 | addsrpr 7893 |
. . . . . 6
| |
| 56 | 55 | 3adant2 1019 |
. . . . 5
|
| 57 | 54, 56 | breq12d 4072 |
. . . 4
|
| 58 | 52, 57 | bitr4d 191 |
. . 3
|
| 59 | 1, 5, 9, 13, 58 | 3ecoptocl 6734 |
. 2
|
| 60 | 59 | 3coml 1213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-ltr 7878 |
| This theorem is referenced by: addgt0sr 7923 ltadd1sr 7924 caucvgsrlemoffcau 7946 caucvgsrlemoffgt1 7947 caucvgsrlemoffres 7948 caucvgsr 7950 ltpsrprg 7951 mappsrprg 7952 map2psrprg 7953 suplocsrlempr 7955 axpre-ltadd 8034 |
| Copyright terms: Public domain | W3C validator |