Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltasrg | Unicode version |
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.) |
Ref | Expression |
---|---|
ltasrg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 7630 | . . 3 | |
2 | oveq1 5825 | . . . . 5 | |
3 | oveq1 5825 | . . . . 5 | |
4 | 2, 3 | breq12d 3978 | . . . 4 |
5 | 4 | bibi2d 231 | . . 3 |
6 | breq1 3968 | . . . 4 | |
7 | oveq2 5826 | . . . . 5 | |
8 | 7 | breq1d 3975 | . . . 4 |
9 | 6, 8 | bibi12d 234 | . . 3 |
10 | breq2 3969 | . . . 4 | |
11 | oveq2 5826 | . . . . 5 | |
12 | 11 | breq2d 3977 | . . . 4 |
13 | 10, 12 | bibi12d 234 | . . 3 |
14 | simp2l 1008 | . . . . . . 7 | |
15 | simp3r 1011 | . . . . . . 7 | |
16 | addclpr 7440 | . . . . . . 7 | |
17 | 14, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | simp2r 1009 | . . . . . . 7 | |
19 | simp3l 1010 | . . . . . . 7 | |
20 | addclpr 7440 | . . . . . . 7 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . . 6 |
22 | addclpr 7440 | . . . . . . 7 | |
23 | 22 | 3ad2ant1 1003 | . . . . . 6 |
24 | ltaprg 7522 | . . . . . 6 | |
25 | 17, 21, 23, 24 | syl3anc 1220 | . . . . 5 |
26 | ltsrprg 7650 | . . . . . 6 | |
27 | 26 | 3adant1 1000 | . . . . 5 |
28 | simp1l 1006 | . . . . . . . 8 | |
29 | addclpr 7440 | . . . . . . . 8 | |
30 | 28, 14, 29 | syl2anc 409 | . . . . . . 7 |
31 | simp1r 1007 | . . . . . . . 8 | |
32 | addclpr 7440 | . . . . . . . 8 | |
33 | 31, 18, 32 | syl2anc 409 | . . . . . . 7 |
34 | addclpr 7440 | . . . . . . . 8 | |
35 | 28, 19, 34 | syl2anc 409 | . . . . . . 7 |
36 | addclpr 7440 | . . . . . . . 8 | |
37 | 31, 15, 36 | syl2anc 409 | . . . . . . 7 |
38 | ltsrprg 7650 | . . . . . . 7 | |
39 | 30, 33, 35, 37, 38 | syl22anc 1221 | . . . . . 6 |
40 | addcomprg 7481 | . . . . . . . . 9 | |
41 | 40 | adantl 275 | . . . . . . . 8 |
42 | addassprg 7482 | . . . . . . . . 9 | |
43 | 42 | adantl 275 | . . . . . . . 8 |
44 | addclpr 7440 | . . . . . . . . 9 | |
45 | 44 | adantl 275 | . . . . . . . 8 |
46 | 28, 14, 31, 41, 43, 15, 45 | caov4d 5999 | . . . . . . 7 |
47 | 41, 33, 35 | caovcomd 5971 | . . . . . . . 8 |
48 | 28, 19, 31, 41, 43, 18, 45 | caov42d 6001 | . . . . . . . 8 |
49 | 47, 48 | eqtrd 2190 | . . . . . . 7 |
50 | 46, 49 | breq12d 3978 | . . . . . 6 |
51 | 39, 50 | bitrd 187 | . . . . 5 |
52 | 25, 27, 51 | 3bitr4d 219 | . . . 4 |
53 | addsrpr 7648 | . . . . . 6 | |
54 | 53 | 3adant3 1002 | . . . . 5 |
55 | addsrpr 7648 | . . . . . 6 | |
56 | 55 | 3adant2 1001 | . . . . 5 |
57 | 54, 56 | breq12d 3978 | . . . 4 |
58 | 52, 57 | bitr4d 190 | . . 3 |
59 | 1, 5, 9, 13, 58 | 3ecoptocl 6562 | . 2 |
60 | 59 | 3coml 1192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 cop 3563 class class class wbr 3965 (class class class)co 5818 cec 6471 cnp 7194 cpp 7196 cltp 7198 cer 7199 cnr 7200 cplr 7204 cltr 7206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-iplp 7371 df-iltp 7373 df-enr 7629 df-nr 7630 df-plr 7631 df-ltr 7633 |
This theorem is referenced by: addgt0sr 7678 ltadd1sr 7679 caucvgsrlemoffcau 7701 caucvgsrlemoffgt1 7702 caucvgsrlemoffres 7703 caucvgsr 7705 ltpsrprg 7706 mappsrprg 7707 map2psrprg 7708 suplocsrlempr 7710 axpre-ltadd 7789 |
Copyright terms: Public domain | W3C validator |