ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringdilem Unicode version

Theorem ringdilem 13249
Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringdilem.b  |-  B  =  ( Base `  R
)
ringdilem.p  |-  .+  =  ( +g  `  R )
ringdilem.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringdilem  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )

Proof of Theorem ringdilem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringdilem.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
2 eqid 2187 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 ringdilem.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
4 ringdilem.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
51, 2, 3, 4isring 13237 . . . . . . . . 9  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) ) ) )
65simp3bi 1015 . . . . . . . 8  |-  ( R  e.  Ring  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
76adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
8 simpr1 1004 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  x  e.  B )
9 rsp 2534 . . . . . . 7  |-  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( x  e.  B  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
107, 8, 9sylc 62 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. y  e.  B  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
11 simpr2 1005 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  y  e.  B )
12 rsp 2534 . . . . . 6  |-  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( y  e.  B  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1310, 11, 12sylc 62 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  A. z  e.  B  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
14 simpr3 1006 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  z  e.  B )
15 rsp 2534 . . . . 5  |-  ( A. z  e.  B  (
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) )  /\  ( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )  ->  ( z  e.  B  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) ) )
1613, 14, 15sylc 62 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  (
x  .x.  z )
)  /\  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) ) )
1716simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x  .x.  ( y  .+  z
) )  =  ( ( x  .x.  y
)  .+  ( x  .x.  z ) ) )
1817caovdig 6062 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
1916simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) )
2019caovdirg 6065 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
2118, 20jca 306 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   .rcmulr 12551   Mndcmnd 12836   Grpcgrp 12896  mulGrpcmgp 13162   Ringcrg 13233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-mulr 12564  df-ring 13235
This theorem is referenced by:  ringdi  13255  ringdir  13256
  Copyright terms: Public domain W3C validator