Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringdilem | Unicode version |
Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringdilem.b | |
ringdilem.p | |
ringdilem.t |
Ref | Expression |
---|---|
ringdilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringdilem.b | . . . . . . . . . 10 | |
2 | eqid 2175 | . . . . . . . . . 10 mulGrp mulGrp | |
3 | ringdilem.p | . . . . . . . . . 10 | |
4 | ringdilem.t | . . . . . . . . . 10 | |
5 | 1, 2, 3, 4 | isring 12976 | . . . . . . . . 9 mulGrp |
6 | 5 | simp3bi 1014 | . . . . . . . 8 |
7 | 6 | adantr 276 | . . . . . . 7 |
8 | simpr1 1003 | . . . . . . 7 | |
9 | rsp 2522 | . . . . . . 7 | |
10 | 7, 8, 9 | sylc 62 | . . . . . 6 |
11 | simpr2 1004 | . . . . . 6 | |
12 | rsp 2522 | . . . . . 6 | |
13 | 10, 11, 12 | sylc 62 | . . . . 5 |
14 | simpr3 1005 | . . . . 5 | |
15 | rsp 2522 | . . . . 5 | |
16 | 13, 14, 15 | sylc 62 | . . . 4 |
17 | 16 | simpld 112 | . . 3 |
18 | 17 | caovdig 6039 | . 2 |
19 | 16 | simprd 114 | . . 3 |
20 | 19 | caovdirg 6042 | . 2 |
21 | 18, 20 | jca 306 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 cmulr 12492 cmnd 12681 cgrp 12737 mulGrpcmgp 12925 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-mulr 12505 df-ring 12974 |
This theorem is referenced by: ringdi 12994 ringdir 12995 |
Copyright terms: Public domain | W3C validator |