ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdirg GIF version

Theorem caovdirg 6134
Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
Hypothesis
Ref Expression
caovdirg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
Assertion
Ref Expression
caovdirg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdirg
StepHypRef Expression
1 caovdirg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
21ralrimivvva 2590 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
3 oveq1 5961 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43oveq1d 5969 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝑦)𝐺𝑧))
5 oveq1 5961 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧))
65oveq1d 5969 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)))
74, 6eqeq12d 2221 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧))))
8 oveq2 5962 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
98oveq1d 5969 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝑧))
10 oveq1 5961 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1110oveq2d 5970 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)))
129, 11eqeq12d 2221 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧))))
13 oveq2 5962 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝐶))
14 oveq2 5962 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶))
15 oveq2 5962 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1614, 15oveq12d 5972 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
1713, 16eqeq12d 2221 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
187, 12, 17rspc3v 2895 . 2 ((𝐴𝑆𝐵𝑆𝐶𝐾) → (∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
192, 18mpan9 281 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  (class class class)co 5954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-iota 5238  df-fv 5285  df-ov 5957
This theorem is referenced by:  caovdird  6135  caovlem2d  6149  srgdilem  13781  ringdilem  13824
  Copyright terms: Public domain W3C validator