ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv2 GIF version

Theorem cnvcnv2 5124
Description: The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cnvcnv2 𝐴 = (𝐴 ↾ V)

Proof of Theorem cnvcnv2
StepHypRef Expression
1 cnvcnv 5123 . 2 𝐴 = (𝐴 ∩ (V × V))
2 df-res 4676 . 2 (𝐴 ↾ V) = (𝐴 ∩ (V × V))
31, 2eqtr4i 2220 1 𝐴 = (𝐴 ↾ V)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2763  cin 3156   × cxp 4662  ccnv 4663  cres 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-res 4676
This theorem is referenced by:  dfrel3  5128  rnresv  5130  rescnvcnv  5133  cocnvcnv1  5181  cocnvcnv2  5182  strslfv2d  12746
  Copyright terms: Public domain W3C validator