| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv2d | Unicode version | ||
| Description: Deduction version of strslfv 12723. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strslfv2d.e |
|
| strfv2d.s |
|
| strfv2d.f |
|
| strfv2d.n |
|
| strfv2d.c |
|
| Ref | Expression |
|---|---|
| strslfv2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslfv2d.e |
. . . 4
| |
| 2 | 1 | simpli 111 |
. . 3
|
| 3 | strfv2d.s |
. . 3
| |
| 4 | 1 | simpri 113 |
. . . 4
|
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | 2, 3, 5 | strnfvnd 12698 |
. 2
|
| 7 | cnvcnv2 5123 |
. . . 4
| |
| 8 | 7 | fveq1i 5559 |
. . 3
|
| 9 | 5 | elexd 2776 |
. . . 4
|
| 10 | fvres 5582 |
. . . 4
| |
| 11 | 9, 10 | syl 14 |
. . 3
|
| 12 | 8, 11 | eqtrid 2241 |
. 2
|
| 13 | strfv2d.f |
. . 3
| |
| 14 | strfv2d.n |
. . . . 5
| |
| 15 | strfv2d.c |
. . . . . . 7
| |
| 16 | 15 | elexd 2776 |
. . . . . 6
|
| 17 | 9, 16 | opelxpd 4696 |
. . . . 5
|
| 18 | 14, 17 | elind 3348 |
. . . 4
|
| 19 | cnvcnv 5122 |
. . . 4
| |
| 20 | 18, 19 | eleqtrrdi 2290 |
. . 3
|
| 21 | funopfv 5600 |
. . 3
| |
| 22 | 13, 20, 21 | sylc 62 |
. 2
|
| 23 | 6, 12, 22 | 3eqtr2rd 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-slot 12682 |
| This theorem is referenced by: strslfv2 12722 strslfv 12723 opelstrsl 12792 |
| Copyright terms: Public domain | W3C validator |