ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d Unicode version

Theorem strslfv2d 12447
Description: Deduction version of strslfv 12449. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2d.s  |-  ( ph  ->  S  e.  V )
strfv2d.f  |-  ( ph  ->  Fun  `' `' S
)
strfv2d.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
strfv2d.c  |-  ( ph  ->  C  e.  W )
Assertion
Ref Expression
strslfv2d  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 110 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfv2d.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 112 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12425 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 cnvcnv2 5062 . . . 4  |-  `' `' S  =  ( S  |` 
_V )
87fveq1i 5495 . . 3  |-  ( `' `' S `  ( E `
 ndx ) )  =  ( ( S  |`  _V ) `  ( E `  ndx ) )
95elexd 2743 . . . 4  |-  ( ph  ->  ( E `  ndx )  e.  _V )
10 fvres 5518 . . . 4  |-  ( ( E `  ndx )  e.  _V  ->  ( ( S  |`  _V ) `  ( E `  ndx )
)  =  ( S `
 ( E `  ndx ) ) )
119, 10syl 14 . . 3  |-  ( ph  ->  ( ( S  |`  _V ) `  ( E `
 ndx ) )  =  ( S `  ( E `  ndx )
) )
128, 11eqtrid 2215 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  ( S `  ( E `
 ndx ) ) )
13 strfv2d.f . . 3  |-  ( ph  ->  Fun  `' `' S
)
14 strfv2d.n . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
15 strfv2d.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1615elexd 2743 . . . . . 6  |-  ( ph  ->  C  e.  _V )
179, 16opelxpd 4642 . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
1814, 17elind 3312 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( S  i^i  ( _V  X.  _V ) ) )
19 cnvcnv 5061 . . . 4  |-  `' `' S  =  ( S  i^i  ( _V  X.  _V ) )
2018, 19eleqtrrdi 2264 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  `' `' S )
21 funopfv 5534 . . 3  |-  ( Fun  `' `' S  ->  ( <.
( E `  ndx ) ,  C >.  e.  `' `' S  ->  ( `' `' S `  ( E `
 ndx ) )  =  C ) )
2213, 20, 21sylc 62 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  C )
236, 12, 223eqtr2rd 2210 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120   <.cop 3584    X. cxp 4607   `'ccnv 4608    |` cres 4611   Fun wfun 5190   ` cfv 5196   NNcn 8867   ndxcnx 12402  Slot cslot 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fv 5204  df-slot 12409
This theorem is referenced by:  strslfv2  12448  strslfv  12449  opelstrsl  12503
  Copyright terms: Public domain W3C validator