ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d Unicode version

Theorem strslfv2d 12436
Description: Deduction version of strslfv 12438. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2d.s  |-  ( ph  ->  S  e.  V )
strfv2d.f  |-  ( ph  ->  Fun  `' `' S
)
strfv2d.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
strfv2d.c  |-  ( ph  ->  C  e.  W )
Assertion
Ref Expression
strslfv2d  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 110 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfv2d.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 112 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12414 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 cnvcnv2 5057 . . . 4  |-  `' `' S  =  ( S  |` 
_V )
87fveq1i 5487 . . 3  |-  ( `' `' S `  ( E `
 ndx ) )  =  ( ( S  |`  _V ) `  ( E `  ndx ) )
95elexd 2739 . . . 4  |-  ( ph  ->  ( E `  ndx )  e.  _V )
10 fvres 5510 . . . 4  |-  ( ( E `  ndx )  e.  _V  ->  ( ( S  |`  _V ) `  ( E `  ndx )
)  =  ( S `
 ( E `  ndx ) ) )
119, 10syl 14 . . 3  |-  ( ph  ->  ( ( S  |`  _V ) `  ( E `
 ndx ) )  =  ( S `  ( E `  ndx )
) )
128, 11syl5eq 2211 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  ( S `  ( E `
 ndx ) ) )
13 strfv2d.f . . 3  |-  ( ph  ->  Fun  `' `' S
)
14 strfv2d.n . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
15 strfv2d.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1615elexd 2739 . . . . . 6  |-  ( ph  ->  C  e.  _V )
179, 16opelxpd 4637 . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
1814, 17elind 3307 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( S  i^i  ( _V  X.  _V ) ) )
19 cnvcnv 5056 . . . 4  |-  `' `' S  =  ( S  i^i  ( _V  X.  _V ) )
2018, 19eleqtrrdi 2260 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  `' `' S )
21 funopfv 5526 . . 3  |-  ( Fun  `' `' S  ->  ( <.
( E `  ndx ) ,  C >.  e.  `' `' S  ->  ( `' `' S `  ( E `
 ndx ) )  =  C ) )
2213, 20, 21sylc 62 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  C )
236, 12, 223eqtr2rd 2205 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115   <.cop 3579    X. cxp 4602   `'ccnv 4603    |` cres 4606   Fun wfun 5182   ` cfv 5188   NNcn 8857   ndxcnx 12391  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-slot 12398
This theorem is referenced by:  strslfv2  12437  strslfv  12438  opelstrsl  12491
  Copyright terms: Public domain W3C validator