ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d Unicode version

Theorem strslfv2d 12661
Description: Deduction version of strslfv 12663. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2d.s  |-  ( ph  ->  S  e.  V )
strfv2d.f  |-  ( ph  ->  Fun  `' `' S
)
strfv2d.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
strfv2d.c  |-  ( ph  ->  C  e.  W )
Assertion
Ref Expression
strslfv2d  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfv2d.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12638 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 cnvcnv2 5119 . . . 4  |-  `' `' S  =  ( S  |` 
_V )
87fveq1i 5555 . . 3  |-  ( `' `' S `  ( E `
 ndx ) )  =  ( ( S  |`  _V ) `  ( E `  ndx ) )
95elexd 2773 . . . 4  |-  ( ph  ->  ( E `  ndx )  e.  _V )
10 fvres 5578 . . . 4  |-  ( ( E `  ndx )  e.  _V  ->  ( ( S  |`  _V ) `  ( E `  ndx )
)  =  ( S `
 ( E `  ndx ) ) )
119, 10syl 14 . . 3  |-  ( ph  ->  ( ( S  |`  _V ) `  ( E `
 ndx ) )  =  ( S `  ( E `  ndx )
) )
128, 11eqtrid 2238 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  ( S `  ( E `
 ndx ) ) )
13 strfv2d.f . . 3  |-  ( ph  ->  Fun  `' `' S
)
14 strfv2d.n . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
15 strfv2d.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1615elexd 2773 . . . . . 6  |-  ( ph  ->  C  e.  _V )
179, 16opelxpd 4692 . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
1814, 17elind 3344 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( S  i^i  ( _V  X.  _V ) ) )
19 cnvcnv 5118 . . . 4  |-  `' `' S  =  ( S  i^i  ( _V  X.  _V ) )
2018, 19eleqtrrdi 2287 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  `' `' S )
21 funopfv 5596 . . 3  |-  ( Fun  `' `' S  ->  ( <.
( E `  ndx ) ,  C >.  e.  `' `' S  ->  ( `' `' S `  ( E `
 ndx ) )  =  C ) )
2213, 20, 21sylc 62 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  C )
236, 12, 223eqtr2rd 2233 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   <.cop 3621    X. cxp 4657   `'ccnv 4658    |` cres 4661   Fun wfun 5248   ` cfv 5254   NNcn 8982   ndxcnx 12615  Slot cslot 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-slot 12622
This theorem is referenced by:  strslfv2  12662  strslfv  12663  opelstrsl  12732
  Copyright terms: Public domain W3C validator