Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv2d | Unicode version |
Description: Deduction version of strslfv 12449. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strslfv2d.e | Slot |
strfv2d.s | |
strfv2d.f | |
strfv2d.n | |
strfv2d.c |
Ref | Expression |
---|---|
strslfv2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2d.e | . . . 4 Slot | |
2 | 1 | simpli 110 | . . 3 Slot |
3 | strfv2d.s | . . 3 | |
4 | 1 | simpri 112 | . . . 4 |
5 | 4 | a1i 9 | . . 3 |
6 | 2, 3, 5 | strnfvnd 12425 | . 2 |
7 | cnvcnv2 5062 | . . . 4 | |
8 | 7 | fveq1i 5495 | . . 3 |
9 | 5 | elexd 2743 | . . . 4 |
10 | fvres 5518 | . . . 4 | |
11 | 9, 10 | syl 14 | . . 3 |
12 | 8, 11 | eqtrid 2215 | . 2 |
13 | strfv2d.f | . . 3 | |
14 | strfv2d.n | . . . . 5 | |
15 | strfv2d.c | . . . . . . 7 | |
16 | 15 | elexd 2743 | . . . . . 6 |
17 | 9, 16 | opelxpd 4642 | . . . . 5 |
18 | 14, 17 | elind 3312 | . . . 4 |
19 | cnvcnv 5061 | . . . 4 | |
20 | 18, 19 | eleqtrrdi 2264 | . . 3 |
21 | funopfv 5534 | . . 3 | |
22 | 13, 20, 21 | sylc 62 | . 2 |
23 | 6, 12, 22 | 3eqtr2rd 2210 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cin 3120 cop 3584 cxp 4607 ccnv 4608 cres 4611 wfun 5190 cfv 5196 cn 8867 cnx 12402 Slot cslot 12404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fv 5204 df-slot 12409 |
This theorem is referenced by: strslfv2 12448 strslfv 12449 opelstrsl 12503 |
Copyright terms: Public domain | W3C validator |