ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2d Unicode version

Theorem strslfv2d 12925
Description: Deduction version of strslfv 12927. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strslfv2d.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2d.s  |-  ( ph  ->  S  e.  V )
strfv2d.f  |-  ( ph  ->  Fun  `' `' S
)
strfv2d.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
strfv2d.c  |-  ( ph  ->  C  e.  W )
Assertion
Ref Expression
strslfv2d  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strslfv2d
StepHypRef Expression
1 strslfv2d.e . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
21simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
3 strfv2d.s . . 3  |-  ( ph  ->  S  e.  V )
41simpri 113 . . . 4  |-  ( E `
 ndx )  e.  NN
54a1i 9 . . 3  |-  ( ph  ->  ( E `  ndx )  e.  NN )
62, 3, 5strnfvnd 12902 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
7 cnvcnv2 5142 . . . 4  |-  `' `' S  =  ( S  |` 
_V )
87fveq1i 5587 . . 3  |-  ( `' `' S `  ( E `
 ndx ) )  =  ( ( S  |`  _V ) `  ( E `  ndx ) )
95elexd 2787 . . . 4  |-  ( ph  ->  ( E `  ndx )  e.  _V )
10 fvres 5610 . . . 4  |-  ( ( E `  ndx )  e.  _V  ->  ( ( S  |`  _V ) `  ( E `  ndx )
)  =  ( S `
 ( E `  ndx ) ) )
119, 10syl 14 . . 3  |-  ( ph  ->  ( ( S  |`  _V ) `  ( E `
 ndx ) )  =  ( S `  ( E `  ndx )
) )
128, 11eqtrid 2251 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  ( S `  ( E `
 ndx ) ) )
13 strfv2d.f . . 3  |-  ( ph  ->  Fun  `' `' S
)
14 strfv2d.n . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
15 strfv2d.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1615elexd 2787 . . . . . 6  |-  ( ph  ->  C  e.  _V )
179, 16opelxpd 4713 . . . . 5  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( _V  X.  _V ) )
1814, 17elind 3360 . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  ( S  i^i  ( _V  X.  _V ) ) )
19 cnvcnv 5141 . . . 4  |-  `' `' S  =  ( S  i^i  ( _V  X.  _V ) )
2018, 19eleqtrrdi 2300 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  `' `' S )
21 funopfv 5628 . . 3  |-  ( Fun  `' `' S  ->  ( <.
( E `  ndx ) ,  C >.  e.  `' `' S  ->  ( `' `' S `  ( E `
 ndx ) )  =  C ) )
2213, 20, 21sylc 62 . 2  |-  ( ph  ->  ( `' `' S `  ( E `  ndx ) )  =  C )
236, 12, 223eqtr2rd 2246 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3167   <.cop 3638    X. cxp 4678   `'ccnv 4679    |` cres 4682   Fun wfun 5271   ` cfv 5277   NNcn 9049   ndxcnx 12879  Slot cslot 12881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fv 5285  df-slot 12886
This theorem is referenced by:  strslfv2  12926  strslfv  12927  strslfv3  12928  opelstrsl  12996
  Copyright terms: Public domain W3C validator