ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqb Unicode version

Theorem cnveqb 5121
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 4836 . 2  |-  ( A  =  B  ->  `' A  =  `' B
)
2 dfrel2 5116 . . . 4  |-  ( Rel 
A  <->  `' `' A  =  A
)
3 dfrel2 5116 . . . . . . 7  |-  ( Rel 
B  <->  `' `' B  =  B
)
4 cnveq 4836 . . . . . . . . 9  |-  ( `' A  =  `' B  ->  `' `' A  =  `' `' B )
5 eqeq2 2203 . . . . . . . . 9  |-  ( B  =  `' `' B  ->  ( `' `' A  =  B  <->  `' `' A  =  `' `' B ) )
64, 5imbitrrid 156 . . . . . . . 8  |-  ( B  =  `' `' B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
76eqcoms 2196 . . . . . . 7  |-  ( `' `' B  =  B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
83, 7sylbi 121 . . . . . 6  |-  ( Rel 
B  ->  ( `' A  =  `' B  ->  `' `' A  =  B
) )
9 eqeq1 2200 . . . . . . 7  |-  ( A  =  `' `' A  ->  ( A  =  B  <->  `' `' A  =  B
) )
109imbi2d 230 . . . . . 6  |-  ( A  =  `' `' A  ->  ( ( `' A  =  `' B  ->  A  =  B )  <->  ( `' A  =  `' B  ->  `' `' A  =  B
) ) )
118, 10imbitrrid 156 . . . . 5  |-  ( A  =  `' `' A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
1211eqcoms 2196 . . . 4  |-  ( `' `' A  =  A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
132, 12sylbi 121 . . 3  |-  ( Rel 
A  ->  ( Rel  B  ->  ( `' A  =  `' B  ->  A  =  B ) ) )
1413imp 124 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( `' A  =  `' B  ->  A  =  B ) )
151, 14impbid2 143 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   `'ccnv 4658   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  cnveq0  5122
  Copyright terms: Public domain W3C validator