ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqb Unicode version

Theorem cnveqb 5066
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 4785 . 2  |-  ( A  =  B  ->  `' A  =  `' B
)
2 dfrel2 5061 . . . 4  |-  ( Rel 
A  <->  `' `' A  =  A
)
3 dfrel2 5061 . . . . . . 7  |-  ( Rel 
B  <->  `' `' B  =  B
)
4 cnveq 4785 . . . . . . . . 9  |-  ( `' A  =  `' B  ->  `' `' A  =  `' `' B )
5 eqeq2 2180 . . . . . . . . 9  |-  ( B  =  `' `' B  ->  ( `' `' A  =  B  <->  `' `' A  =  `' `' B ) )
64, 5syl5ibr 155 . . . . . . . 8  |-  ( B  =  `' `' B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
76eqcoms 2173 . . . . . . 7  |-  ( `' `' B  =  B  ->  ( `' A  =  `' B  ->  `' `' A  =  B )
)
83, 7sylbi 120 . . . . . 6  |-  ( Rel 
B  ->  ( `' A  =  `' B  ->  `' `' A  =  B
) )
9 eqeq1 2177 . . . . . . 7  |-  ( A  =  `' `' A  ->  ( A  =  B  <->  `' `' A  =  B
) )
109imbi2d 229 . . . . . 6  |-  ( A  =  `' `' A  ->  ( ( `' A  =  `' B  ->  A  =  B )  <->  ( `' A  =  `' B  ->  `' `' A  =  B
) ) )
118, 10syl5ibr 155 . . . . 5  |-  ( A  =  `' `' A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
1211eqcoms 2173 . . . 4  |-  ( `' `' A  =  A  ->  ( Rel  B  -> 
( `' A  =  `' B  ->  A  =  B ) ) )
132, 12sylbi 120 . . 3  |-  ( Rel 
A  ->  ( Rel  B  ->  ( `' A  =  `' B  ->  A  =  B ) ) )
1413imp 123 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  ( `' A  =  `' B  ->  A  =  B ) )
151, 14impbid2 142 1  |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  `' A  =  `' B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   `'ccnv 4610   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  cnveq0  5067
  Copyright terms: Public domain W3C validator