Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq0 GIF version

Theorem cnveq0 5002
 Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 4949 . 2 ∅ = ∅
2 rel0 4671 . . . . 5 Rel ∅
3 cnveqb 5001 . . . . 5 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ 𝐴 = ∅))
42, 3mpan2 422 . . . 4 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
5 eqeq2 2150 . . . . 5 (∅ = ∅ → (𝐴 = ∅ ↔ 𝐴 = ∅))
65bibi2d 231 . . . 4 (∅ = ∅ → ((𝐴 = ∅ ↔ 𝐴 = ∅) ↔ (𝐴 = ∅ ↔ 𝐴 = ∅)))
74, 6syl5ibr 155 . . 3 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
87eqcoms 2143 . 2 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
91, 8ax-mp 5 1 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332  ∅c0 3367  ◡ccnv 4545  Rel wrel 4551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997  df-xp 4552  df-rel 4553  df-cnv 4554 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator