ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq0 GIF version

Theorem cnveq0 5126
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveq0 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cnveq0
StepHypRef Expression
1 cnv0 5073 . 2 ∅ = ∅
2 rel0 4788 . . . . 5 Rel ∅
3 cnveqb 5125 . . . . 5 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ 𝐴 = ∅))
42, 3mpan2 425 . . . 4 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
5 eqeq2 2206 . . . . 5 (∅ = ∅ → (𝐴 = ∅ ↔ 𝐴 = ∅))
65bibi2d 232 . . . 4 (∅ = ∅ → ((𝐴 = ∅ ↔ 𝐴 = ∅) ↔ (𝐴 = ∅ ↔ 𝐴 = ∅)))
74, 6imbitrrid 156 . . 3 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
87eqcoms 2199 . 2 (∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅)))
91, 8ax-mp 5 1 (Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  c0 3450  ccnv 4662  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator