ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqb GIF version

Theorem cnveqb 5184
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
cnveqb ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))

Proof of Theorem cnveqb
StepHypRef Expression
1 cnveq 4896 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 dfrel2 5179 . . . 4 (Rel 𝐴𝐴 = 𝐴)
3 dfrel2 5179 . . . . . . 7 (Rel 𝐵𝐵 = 𝐵)
4 cnveq 4896 . . . . . . . . 9 (𝐴 = 𝐵𝐴 = 𝐵)
5 eqeq2 2239 . . . . . . . . 9 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
64, 5imbitrrid 156 . . . . . . . 8 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
76eqcoms 2232 . . . . . . 7 (𝐵 = 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
83, 7sylbi 121 . . . . . 6 (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵))
9 eqeq1 2236 . . . . . . 7 (𝐴 = 𝐴 → (𝐴 = 𝐵𝐴 = 𝐵))
109imbi2d 230 . . . . . 6 (𝐴 = 𝐴 → ((𝐴 = 𝐵𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
118, 10imbitrrid 156 . . . . 5 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1211eqcoms 2232 . . . 4 (𝐴 = 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
132, 12sylbi 121 . . 3 (Rel 𝐴 → (Rel 𝐵 → (𝐴 = 𝐵𝐴 = 𝐵)))
1413imp 124 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
151, 14impbid2 143 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  ccnv 4718  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727
This theorem is referenced by:  cnveq0  5185
  Copyright terms: Public domain W3C validator