Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4rd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995.) |
Ref | Expression |
---|---|
3eqtr4d.1 | |
3eqtr4d.2 | |
3eqtr4d.3 |
Ref | Expression |
---|---|
3eqtr4rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4d.3 | . . 3 | |
2 | 3eqtr4d.1 | . . 3 | |
3 | 1, 2 | eqtr4d 2211 | . 2 |
4 | 3eqtr4d.2 | . 2 | |
5 | 3, 4 | eqtr4d 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: csbcnvg 4804 fvco4 5580 phplem4 6845 phplem4on 6857 omp1eomlem 7083 ctssdclemn0 7099 recexnq 7364 prarloclemcalc 7476 addcomprg 7552 mulcomprg 7554 mulcmpblnrlemg 7714 axmulass 7847 divnegap 8636 modqlt 10303 modqmulnn 10312 seq3val 10428 seqvalcd 10429 seq3caopr3 10451 seq3f1olemqsumkj 10468 seq3f1olemqsumk 10469 seq3f1olemqsum 10470 seq3f1o 10474 bcval5 10711 omgadd 10750 seq3coll 10790 cjreb 10843 recj 10844 imcj 10852 imval2 10871 resqrexlemover 10987 sqrtmul 11012 amgm2 11095 maxabslemab 11183 xrmaxadd 11237 summodclem2a 11357 fsumf1o 11366 sumsnf 11385 sumsplitdc 11408 fsummulc2 11424 binom 11460 bcxmas 11465 expcnvap0 11478 expcnv 11480 cvgratnnlemnexp 11500 cvgratnnlemmn 11501 prodmodclem3 11551 fprodseq 11559 fprodf1o 11564 prodsnf 11568 fprodfac 11591 fprodabs 11592 ege2le3 11647 efaddlem 11650 eftlub 11666 tanval3ap 11690 tannegap 11704 cosmul 11721 cos01bnd 11734 demoivreALT 11749 flodddiv4 11906 dfgcd3 11978 absmulgcd 11985 sqpweven 12142 2sqpwodd 12143 crth 12191 eulerthlema 12197 phisum 12207 pythagtriplem14 12244 pythagtriplem19 12249 pcmul 12268 pcfac 12315 ctiunctlemfo 12407 setsslnid 12480 mulgnn0p1 12864 mulgneg 12871 mulgnn0dir 12882 srgpcomp 12979 opprring 13053 oppr1g 13056 txbasval 13347 rplogbchbase 13948 lgsdir2 14014 lgsdir 14016 lgsdi 14018 lgsdirnn0 14028 lgsdinn0 14029 |
Copyright terms: Public domain | W3C validator |